1. The velocity distribution for the flow of crude oil at $100^{\circ} \mathrm{F}\left(\mu=8 \times 10^{-5} \mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}\right)$ between two walls is given by $u=100 y(0.1-y) f t s$, where y is measured in feet and space between the walls is 0.1 ft . Determine the shear stress at the walls and at the centerline.

Figure 1 (for Problem 1)

Figure 2 (for Problem 2)
2. The velocity of water flow in the nozzle shown is given by the following expression: $V=2 t /(1-0.5 x / L)^{2}$, where $V=$ velocity in feet per second, $t=$ time in seconds, $x=$ distance along the nozzle, and $L=$ length of the nozzle $=4 \mathrm{ft}$. When $x=0.5 \mathrm{~L}$ and $t=3 \mathrm{~s}$, what is the local acceleration along the centerline? What is the convective acceleration? Assume one-dimensional flow prevails.
3. The plane rectangular gate can pivot about the support at B. The rectangular gate is 1 m wide. Calculate the hydrostatic force acting on the gate. For the conditions given, is it stable or unstable? Neglect the weight of the gate.

Figure 3 (for Problem 3)

Figure 4 (for Problem 4)
4. The pipe flow in Figure 4 fills a cylindrical tank as shown. At time $t=0$, the water depth in the tank is 30 cm . Estimate the time required to fill the remainder of the tank.

