General information: $\gamma_{\text {water }}=62.4 \mathrm{lbf} / \mathrm{ft}^{3}, 1 \mathrm{hp}=550 \mathrm{ft}-\mathrm{lbf} / \mathrm{s}$

1. Air with a density of $0.0644 \mathrm{lbm} / \mathrm{ft}^{3}$ is flowing upward in the vertical duct, as shown. The velocity at the inlet (station 1) is $100 \mathrm{ft} / \mathrm{sec}$, and the area ratio between station 1 and 2 is $0.5\left(A_{2} / A_{1}=0.5\right)$. Two pressure taps, $10 f t$ apart, are connected to a manometer, as shown. The specific weight of the manometer liquid is $120 \mathrm{lbf} / \mathrm{ft}^{3}$. Find the deflection, Δh, of the manometer.

2. This 30° vertical bend in a pipe with a $2-\mathrm{ft}$ diameter carries water at a rate of $31.4 c f s$. If the pressure p_{1} is 10 psi at the lower end of the bend, where the elevation is 100 ft , and p_{2} is 8.5 psi at the upper end, where the elevation is 103 ft , what will be the vertical component of force that must be exerted by the "anchor" on the bend to hold it in position? The bend itself weights 300lb, and length L is $4 f$.

3. What horsepower must be supplied to the water to pump 3.0cfs from the lower to the upper reservoir? Assume that the head loss in the pipes is given by $h_{L}=0.015(L / D)\left(V^{2} / 2 g\right)$, where L is the length of the pipe in feet and D is the pipe diameter in feet. Sketch the $H G L$ and the $E G L$.

4. It is known that for flow past cylinders, vortices are shed alternately from one side of the cylinder and from the other. If the frequency of shedding n is a function of the approach velocity V, the diameter d of the cylinder, the mass density ρ, and the viscosity μ, what are the π-groups for this phenomenon?
