1. For water flow in channel as shown in figure
$B=0.1 \mathrm{~m} \quad \mathrm{U}_{0}=1.0 \mathrm{~m} / \mathrm{s}$

$$
u=\left(\frac{y}{B} \times\left(1-\frac{y}{B}\right)\right) \cdot U_{o}
$$

1) Calculate the shear stress at $\mathrm{y}=0 \mathrm{~m}$, and $\mathrm{y}=0.05 \mathrm{~m}$ (viscosity of water:
$0.001 \mathrm{~N} \bullet \mathrm{~s} / \mathrm{m}^{2}$)

2) If the width of the channel is 1 m (the direction into the paper), calculate the volume rate ($\mathrm{m}^{3} / \mathrm{s}$) and mean velocity (m / s) of the flow.
2. If the rectangular gate shown in figure is attached to a horizontal shaft at its midpoint, what torque would have to be applied to the shaft to open the gate ? The rectangular conduit and gate are both 3 m wide, and $\mathrm{l}=5 \mathrm{~m}$.
(The density of water is 1000 $\mathrm{kg} / \mathrm{m}^{3}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$, moments of inertia of plane: $I=\frac{b h^{3}}{12}$, where b is the width and h is the height)

3. The open tank shown in figure has a constant inflow discharges of 20 $\mathrm{ft}^{3} / \mathrm{s}$, A 1.0 ft diameter drain provides a variable outflow velocity equal to $\sqrt{2 g h} \mathrm{ft} / \mathrm{s}$. What is the equilibrium height h_{eq} of the liquid in the tank ? ($\mathrm{g}: 32.2 \mathrm{ft} / \mathrm{s}^{2}$)

