LIST OF FIGURES

Figu	re	
2-1.	Overview of Maneuvering prediction methods (Proceedings of 25 th ITTC, Vol. I, pp. 145).	7
2-2.	Earth- and ship-fixed coordinate systems.	10
2-3.	General PMM test coordinate system and motion parameters.	13
2-4.	Illustrations of typical PMM motions for (a) static drift, (b) pure sway, (c) pure yaw, and (d) yaw and drift tests, and definitions of PMM motion parameters in the PMM coordinate systems for (e) static drift, (f) pure sway, (g) pure yaw, and (h) yaw and drift tests.	16
3-1.	IIHR towing tank facility and maneuvering experimental setup	30
3-2.	Top view of PMM carriage (top left), close up of the scotch yoke drive (top right), and towing tank PMM test coordinate systems (bottom).	31
3-3.	Coordinate systems for PMM test (Not scaled).	32
3-4.	Coordinate systems for PIV test (Not scaled)	35
3-5.	Photographs of DTMB model 5512. The top view highlights the bilge keels	36
3-6.	Sideviews show: (a) fixed- and (b) free-mounts, and (c) fixed- and (d) free- model setups.	39
3-7.	Data flow chart for data acquisition and reduction	50
3-8.	Izumi six-component load cell (left) and Izumi amplifiers (right).	51
3-9.	Krypton Electronic Engineering Rodym DMM motion tracker	52
3-10.	LaVision Stereo PIV System.	53
3-11.	Experimental setup for the SPIV flow measurement tests.	56
3-12.	Overhead view of the Stereo PIV System.	57
4-1.	Time history (left) and FFT(right) of static drift test data: (a) U_C , (b) β , (c) ϕ , (d) F_x , (e) F_y , (f) M_z , (g) z_{mm} , and (h) θ . Tests are for FR _{z0} mount condition and at $Fr = 0.280$.	77
4-2.	Figure 4-2 Time history (left) and FFT (right) of dynamic tests data: (a) U_C , (b) y , (c) ψ , (d) F_x , (e) F_y , (f) M_z , (g) z_{mm} , and (h) θ . Tests are for FR _{zθ} mount condition and at $Fr = 0.280$.	78

4-3.	Figure 4-3 PMM noise test results: FFT for F_x , F_y , and M_z . Groups A, B, and C show noise sources for 5 and 7 Hz (natural frequencies of the load-cell) and Groups D and E for 3, 4, and 10 Hz (mechanical vibrations due to carriage speed), respectively.	79
4-4.	Tests for stationarity: Normalized interval mean (\bar{x}_i) and mean square $(\overline{x_i^2})$ values for (a) $U\underline{C}$, (b) β or y, (c) ϕ , (d) Fx , (e) Fy , (f) Mz , (g) zmm, and (h) θ . Red: \bar{x}_i ; green: x_i^2 , which are normalized such that $z(yi) = (yi - m)/s$ where $yi = \bar{x}_i$ or x_i^2 and m and s are the mean and standard deviation of yi for $N = 20$, respectively.	80
4-5.	Probability density functions of the static drift test data for (a) U_c , (b) β , (c) ϕ , (d) F_x , (e) F_y , (f) M_z , (g) z_{mm} , and (h) θ , respectively. $\overline{X^2}$ is the average X^2 value of for 12 repeat tests. The acceptance region for a normality is $X^2 \le \chi^2_{n:\alpha} = 51.0$ for $n = 36$ and $\alpha = 0.05$.	81
4-6.	Normalized running mean $\bar{x}^*(N)$ and running standard deviation $s_x^*(N)$ (left column) and statistical convergence error $E_{sc}(\%)$ (right column) of (a) U_C , (b) β , (c) F_x , (d) F_y , (e) M_z , (f) z_{mm} , (g) θ , and (h) ϕ (Static drift test).	82
4-7.	Statistical convergence errors of (a) the mean \bar{x} and (b) variance s^2 for stationary random variable x.	92
4-8.	Example PIV flow field data: Contours of (a) mean axial velocity U and (b) mean turbulent kinetic energy k of DTMB 5512 model in steady straight towing at $Fr = 0.280$ condition. Measurement location is at $x/L = 0.935$, near the center plane of the model (port side). The total number of PIV images used for averaging $N_{total} = 2,250$ and the effective number $N = 1,720$ at Point A	92
4-9.	Flow data and statistics for Point A of the example flow: (a) instantaneous velocities U_i , V_i , W_i , (b) standard normal probability density function $p(x)$, (c) running mean \bar{x}_N , (d) running variance s_N^2 , (e) E for U , V , W , and (f) E_U for uu , vv , ww , respectively.	93
4-10.	Example PMM PIV flow field data: Contours of phase-averaged (left) axial velocity U and (right) turbulent kinetic energy k of DTMB 5512 model in pure yaw motion ($\gamma = 180^{\circ}$) at $Fr = 0.280$. Measurement location is at $x/L = 0.935$, near the keel of the model. The total number of PIV images $N_{total} = 254$.	94
5-1.	Definition of β_{ref} for drift angle calibration.	.129
5-2.	Static drift test results: (a) <i>X</i> ; (b) <i>Y</i> ; (c) <i>N</i> , (d) <i>z</i> , (e) θ , respectively. Symbols: $\Box Fr = 0.138 \text{ o} Fr = 0.280, \Delta Fr = 0.410.$.130
5-3.	Dynamic test results: (a) X, (b) Y, (c) N, (d) z, and (e) θ for pure sway (left, $\beta_{max} = 10^{\circ}$), pure yaw (center, $r_{max} = 0.30$), and yaw and drift (right, $\beta = 10^{\circ}$) tests, respectively. Symbols for pure yaw data: $\Box Fr = 0.138$ o $Fr = 0.280$, $\Delta Fr = 0.410$.	.131
5-4.	Comparisons of UA between facilities (Scale effect): (a) Static drift data $(X,Y,N: Fr = 0.138; X,Y,N: Fr = 0.280; X,Y,N: Fr = 0.410)$ and (b) Dynamic tests data $(X,Y,N: Pure sway; X,Y,N: Pure yaw; X,Y,N: Yaw and drift)$.132

5-5.	Comparisons of UA between facilities (Fr effect): (a) Static drift data and (b) Dynamic tests data. Symbols: X,Y,N, IIHR; X,Y,N, FORCE; X,Y,N, IN-SEAN.	132
5-6.	Error propagation chart for SPIV measured flow field data	154
5-7.	SPIV measured uniform flow field and systematic standard uncertainty for (a) U , (b) V , (c) W , (d) uu , (e) vv , (f) ww , (g) uv , (h) uw , (i) vw , (j) k , and (k) ω_x , respectively.	155
5-8.	Pitot probe open water velocity U with normalized with the carriage speed U_C at various longitudinal locations, x . relative to the PIV measurement area (laser sheet plane) position $x/D = 0$, where $D = 100$ mm is the cylinder diameter of the underwater PIV camera housing.	156
5-9.	Open water pure yaw test result for SPIV UA. Symbols: \Box , Test 1; Δ , Test 2; \circ , Test 3; and solid line is the mean δ of Test 1, 2, and 3. Each symbol shows the spatially averaged δ value over the SPIV measurement area.	156
5-10	SPIV measured pure yaw flow field and relative expanded uncertainty U_{95} (%) for: (a) U , (b) V , (c) W , (d) uu , (e) vv , (f) ww , (g) uv , (h) uw , (i), vw , (j) k , and (k) ω_x , respectively. (l) Inner region, K ≤ 0.45 and Outer region, K ≥ 0.45 , where $K = \frac{1}{2}(U^2 + V^2 + W^2)$.	157
6-1.	Static drift test data (Corrected for symmetry): (a) <i>X</i> , (b) <i>Y</i> , and (c) <i>N</i> . Symbols: $\Box Fr = 0.138$, o $Fr = 0.280$, $\Delta Fr = 0.410$.	163
6-2.	Time-histories for pure sway (left), pure yaw (center), and yaw and drift (right) tests at Fr = 0.280 (Corrected for symmetry): Forced-motions (a) β and ψ ; and responses in (b) X, (c) Y, and (d) N.	164
6-3.	Pure sway X, Y, and N data FS harmonics: (a) X_0 , (b) X_{C2} , (c) Y_{C1} and N_{C1} , (d) Y_{S1} and N_{S1} , and (e) Y_{C3} and N_{C3} .	176
6-4.	Pure yaw X, Y, and N data FS harmonics: (a) X_0 , (b) X_{C2} , (c) Y_{S1} , (d) Y_{C1} , (e) Y_{S3} , (f) N_{S1} , (g) N_{C1} , and (h) N_{S3} . Simbols: \Box , Fr = 0.138; o, Fr = 0.280; Δ , Fr = 0.410.	177
6-5.	Yaw and drift X, Y, and N data FS harmonics: (a) X_0 , (b) X_{S1} , (c) X_{C2} , (d) Y_0 and N_0 , (e) Y_{S1} and N_{S1} , (f) Y_{C1} and N_{C1} , (g) Y_{C2} and N_{C2} , and (h) Y_{S3} and N_{S3}	178
6-6.	Single-run method (sway derivatives): (a) linear and (b) non-linear deriva- tives. Hydrodynamic derivatives shown are scaled with MR _L	179
6-7.	Single-run method (yaw derivatives): (a) linear and (b) non-linear derivatives. Hydrodynamic derivatives shown are scaled with MR _L	179
6-8.	Single-Run method (cross-coupled derivatives): (a) SR_L (b) SR_H . Hydrody- namic derivatives shown are scaled with MR_L .	180
6-9.	Speed variation test: Hydrodynamic derivatives with surge velocity change Δu : (a) Sway and (b) yaw derivatives. Hydrodynamic derivatives shown are scaled with the values at $\Delta u = 0$ (Fr = 0.280)	180

6-10.	Comparisons between facilities – Static drift data (Corrected for symmetry): (a) X, (b) Y, and (c) N at Fr =0.138 (left), 0.280 (center), 0.410 (right), respectively. Symbols: O, IIHR; Δ , FORCE; \Box , INSEAN	189
6-11.	Comparisons between facilities – Dynamic tests data (Corrected for symmetry): (a) X, (b) Y, and (c) N for pure sway (left, $\beta_{max} = 10^{\circ}$), pure yaw (center, $r_{max} = 0.30$), and yaw and drift (right, $\beta = 10^{\circ}$) tests at $Fr = 0.280$, respectively. Symbols (colors): •, IIHR; —, FORCE; and —, INSEAN.	190
6-12.	Comparisons between facilities: (a) sway-velocity and (b) -acceleration deriv- atives. Derivatives and model lengths are scaled values. Symbols: O, $X_{\nu\nu}$; \Box , Y_{ν}^* , $Y_{\nu\nu\nu}^*$, or Y_{ν}^* ; and Δ , N_{ν}^* , $N_{\nu\nu\nu}^*$, or N_{ν}^* , respectively. Color codes: $Fr = 0.138$ (blue), 0.280 (red), and 0.410 (green), respectively.	191
6-13.	. Comparisons between facilities: (a) yaw-rate and (b) -acceleration deriva- tives. Derivatives and model lengths are scaled values. Symbols: O, X_{rr}^* ; \Box , Y_r^* , Y_{rrr}^* , or Y_{r}^* ; and Δ , N_r^* , N_{rrr}^* , or N_{r}^* , respectively. Color codes: $Fr = 0.138$ (blue), 0.280 (red), and 0.410 (green), respectively.	191
6-14.	. Motions data for static drift tests (Corrected for symmetry): (a) z , (b) θ , and (c) ϕ , and the polynomial-fit coefficients (scaled): (d) B^* for z , (e) B^* for θ , and (f) A^* and B^* for ϕ , respectively. Symbols for (a), (b), and (c): \Box , $Fr =$ 0.138; o, $Fr = 0.280$; Δ , $Fr = 0.410$; ∇ , A^* ; \Diamond , B^* . Color codes: —, FRz $_{\theta}$ and —, FRz $_{\theta\phi}$.	198
6-15.	Time-histories of motions data (Corrected for symmetry) for pure sway test (left column), pure yaw test (center column), and yaw and drift test (right column) at $Fr = 0.280$, resepctively: (a) input motions β or ψ , and responses in (b) z, (b) θ , and (c) ϕ . Color codes: —, FRz $_{\theta}$ and —, FRz $_{\theta\phi}$	199
6-16.	. Pure yaw heave 0th- and 2nd-order harmonic amplitudes: (a) z_0 and (b) z_2 , and scaled curve-fit coefficients: (c) C^* and (d) E^* . Simbols for (a) and (b): \Box $Fr = 0.138$, o $Fr = 0.280$, $\Delta Fr = 0.410$. Color code: —, FRz_{θ} and —, $FRz_{\theta\phi}$	200
6-17.	Pure yaw pitch 0th- and 2nd-order harmonic amplitudes: (a) θ_0 and (b) θ_2 , and scaled curve-fit coefficients: (c) C^* and (d) E^* , and (e) scaled 1st-order roll and 2nd-order pitch harmonic amplitudes, ϕ_1^* and θ_2^* . Simbols for (a) and (b): $\Box Fr = 0.138$, o $Fr = 0.280$, $\Delta Fr = 0.410$. Color codes: —, FR z_{θ} and —, FR $z_{\theta\phi}$	201
6-18.	. Comparisons between mount-conditions – Static drift data (Corrected for symmetry) at Fr=0.138 (left), 0.280 (center), and 0.410 (right): (a) X, (b) Y, and (c) N. Symbols (colors): \Box , FX0; \diamond , FXz _{θ} ; dash-line, FRz _{θ} ; and Δ , FRz _{$\theta\phi$}	210
6-19.	. Comparisons of static drift X, Y, and N data between the FR _{zθ} and FX ₀ mount conditions: (a) Δx vs. β at $Fr = 0.280$ and (b) Δx vs. Fr at $\beta = 10^{\circ}$, where the Δx values are scaled with those at $\beta = 10^{\circ}$ and with those at $Fr = 0.138$, respectively.	211
6-20.	. Comparisons of the static drift <i>X</i> , <i>z</i> , and θ data at $\beta = 0^{\circ}$ with the resistance test (Longo et al. 2005): (a) C_{T15C} and (b) σ and τ	211

6-21.	Comparisons between mount-conditions – Pure sway (left, $\beta_{max} = 10^{\circ}$ case), pure yaw (center, $r_{max} = 0.30$ case), and yaw and drift (right, $\beta = 10^{\circ}$ case) tests at $Fr = 0.280$ (Corrected for symmetry): (a) X, (b) Y, (c) N, (d) z, (e) θ , and (f) ϕ . Symbols (colors): —, FX0; —, FXz $_{\dot{\theta}}$, •, FRz $_{\dot{\theta}}$, and —, FRz $_{\theta\phi}$	212
6-22.	Trajectory of model in pure sway motion (top) and overviews of the flow around the model (below).	224
6-23.	Vortical flow structures around the DTMB 5512 geometry in steady maneuvers for: (a) straight-ahead and (b) static drift at $\beta = 10^{\circ}$ cases. (CFD simulations by Sakamoto 2009)	226
6-24.	Vortical flow structures around the DTMB 5512 geometry in pure sway maneuvering with $\beta_{\text{max}} = 10^{\circ}$: (a) Iso-surfaces of relative helicity (CFD simulations by Sakamoto 2009) and (b) contours of axial vorticity (SPIV).	227
6-25.	Phase-averaged axial velocity U field for pure sway test	228
6-26.	Time histories of the average axial velocity $U_{\leq 0.9}$ (top) and FS harmonics (bottom) for pure sway test.	230
6-27.	Time histories of the minimum axial velocity U_{\min} (top) and FS harmonics (bottom) for pure sway test.	231
6-28.	Phase-averaged cross-flow (V,W) vector field for pure sway test.	233
6-29.	Cross flow velocity vector magnitude $S = (V^2 + W^2)^{1/2}$ and streamlines for pure sway test.	235
6-30.	Phase-averaged turbulent kinetic energy k field for pure sway test.	237
6-31.	Time histories of k_{mean} (top) and FS harmonics (bottom) for pure sway test	238
6-32.	Time histories of k_{max} (top) and FS harmonics (bottom) for pure sway test	239
6-33.	Phase-averaged Reynolds stress uu field for pure sway test.	241
6-34.	Phase-averaged Reynolds stress vv field for pure sway test	243
6-35.	Phase-averaged Reynolds stress ww field for pure sway test.	245
6-36.	Phase-averaged Reynolds stress uv field for pure sway test	247
6-37.	Phase-averaged Reynolds stress uw field for pure sway test	249
6-38.	Phase-averaged Reynolds stress vw field for pure sway test.	251
6-39.	Average normal (top) and shear (bottom) Reynolds stresses for k_{mean} (Pure sway test).	252
6-40.	Average normal (top) and shear (bottom) Reynolds stresses for k_{max} (Pure sway test).	253
6-41.	Axial vorticity ω_x field for pure sway test.	255

6-42.	Time histories of maximum/minimum axial vorticity value of the sonar dorm vortex (SD) for pure sway.	256
6-43.	Time histories of maximum/minimum axial vorticity value of the bilge keel vortex (BK) for pure sway.	256
6-44.	Time histories of maximum/minimum axial vorticity value of the aft-body keel vortex (AK) for pure sway test	257
6-45.	Trajectory of model (top) in pure yaw motion and overviews of the flow around the model (below).	271
6-46.	Vortical flow structures around the DTMB 5512 geometry in steady maneuver for: (a) static drift at $\beta = 10^{\circ}$ and (b) steady turn at $r = 0.3$ cases. (CFD simulations by Sakamoto 2009).	273
6-47.	Vortical flow structures around the DTMB 5512 geometry in pure yaw maneuvering with $r_{\text{max}} = 0.3$: (a) Iso-surfaces of relative helicity (CFD simulations by Sakamoto 2009) and (b) contours of axial vorticity (SPIV).	274
6-48.	Phase-averaged axial velocity U field for pure yaw test.	276
6-49.	Average axial velocity for $U \le 0.9$ (top) and FS harmonics (bottom)	277
6-50.	Minimum axial velocity (top) and FS harmonics (bottom).	278
6-51.	Phase-averaged cross-flow (V, W) vector field for pure yaw test	280
6-52.	Cross flow velocity vector magnitude $S = (V^2 + W^2)^{1/2}$ and streamlines for pure yaw test.	282
6-53.	Phase-averaged turbulent kinetic energy k field for pure yaw test	284
6-54.	Average turbulent kinetic energy k_{mean} (top) and FS harmonics (bottom)	285
6-55.	Maximum turbulent kinetic energy k_{max} (top) and FS harmonics (bottom)	286
6-56.	Phase-averaged Reynolds stress <i>uu</i> field for pure yaw test	288
6-57.	Phase-averaged Reynolds stress vv field for pure yaw test.	290
6-58.	Phase-averaged Reynolds stress ww field for pure yaw test	292
6-59.	Phase-averaged Reynolds stress uv field for pure yaw test.	294
6-60.	Phase-averaged Reynolds stress <i>uw</i> field for pure yaw test	296
6-61.	Phase-averaged Reynolds stress vw field for pure yaw test	298
6-62.	Average Reynolds normal (top) and shear (bottom) stresses for k_{mean}	299
6-63.	Average Reynolds normal (top) and shear (bottom) stresses for k_{max}	300

6-64.	Average anisostropy b_{ij} of normal (top) and shear (bottom) Reynolds stresses for k_{max} .	.301
6-65.	Axial vorticity ω_x field for pure yaw test	.303
6-66.	Time histories of the maximum/minimum axial vorticity ω_x values of sonar dome (SD) vortex (top) and FS harmonics (bottom) for pure yaw.	.304
6-67.	Measured (symbols) and reconstructed (lines) $\omega_{x,max/min}$ values of the sonar dome (SD) vortex for pure yaw.	.305
6-68.	Time histories of the maximum/minimum axial vorticity ω_x values of the bilge keel (BK) vortices at x = 0.535 (left) and x = 0.735 (right), respectively, for pure yaw.	.306
6-69.	Time histories of the maximum/minimum axial vorticity ω_x values of the aft- body keel (AK) vortex for pure yaw test.	.307