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CHAPTER 6 RESULTS AND DISCUSSION 

6.1 Forces and Moment and Motions 

Results are presented and discussed first for the data from the FRz condition.  

Time-mean and -histories of the forces and moment data from static and dynamic PMM 

tests are presented in Section 6.1.1.  In Section 6.1.2, hydrodynamic derivatives from 

forces and moment data are determined with the „Multiple-Run‟ and the „Single-Run‟ me-

thods as introduced in Section 2.3.5, and results are compared between the methods by 

defining and evaluating the data-reconstruction error, 𝐸𝑅 .  Forces and moment, and the 

resulting hydrodynamic derivatives from the three different facilities data using ship-

models with different size are compared in Section 6.1.3, where the trends of the hydro-

dynamic derivatives with the model-size are discussed.  Heave, pitch, and roll motions of 

the model during the static and dynamic PMM tests for the FRz and FRz conditions are 

presented in Section 6.1.4.  Lastly, the effects of different mount-conditions including 

FX0, FX, and FRz  are discussed in Section 6.1.5.  Note that all data presented herein 

are corrected for asymmetry as per discussed in Section 5.1.5. 

6.1.1 Time-mean and -histories of Data  

Time-mean values of static drift 𝑋, 𝑌, and 𝑁 are shown in Fig. 6-1 (a), (b), and 

(c), respectively, for Fr = 0.138, 0.280, and 0.410 cases.  Data are fitted to quadratic, 

𝑋 = 𝐴 + 𝐵𝛽2, and cubic, 𝑌, 𝑁 = 𝐴𝛽 + 𝐵𝛽3, functions, respectively, which can be re-

written as 𝑋 = 𝐴 ⋅  1 + 𝜆  and 𝑌, 𝑁 = 𝐴𝛽 ⋅  1 + 𝜆 , respectively, where 𝜆 is defined as 

 

𝜆 ≡
𝐵

𝐴
𝛽2         (6.1)  
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which is the ratio of the non-linear terms to the linear terms, representing the degree of 

non-linearity of data9.  For 𝛽 << 10, 𝜆  0 (at 𝛽 = 5, 𝜆 = 0.06, 0.04, and 0.02 for 𝑋, 𝑌, 

and 𝑁, respectively, at Fr = 0.280) and 𝑋 in (a) is close to a constant value, i.e. 𝑋 = 𝐴, 

and 𝑌 and 𝑁 in (b) and (c) are nearly linear, i.e. 𝑌, 𝑁 = 𝐴𝛽, with slope 𝐴 seemingly inde-

pendent of Fr.  This is consistent with Longo et al. (2002) where the authors measured 

the resistance 𝐶𝑇 , side force 𝐶𝑆, and drift moment 𝐶𝑀  (corresponding to 𝑋, 𝑌, and 𝑁, re-

spectively) of the Series 60 CB = 0.6 model in oblique towing for a range of 𝛽 = 0 - 10 

and Fr = 0.1 - 0.35.  The authors curve-fitted data as 𝐶𝑇 = 𝑎𝛽 + 𝑏 and 𝐶𝑆,𝑀 = 𝑎𝛽2 +

𝑏𝛽 + 𝑐, respectively, and reported that for the former 𝑎 is independent of Fr and for the 

latter 𝑏 is nearly independent of Fr.  For 𝛽  > 10, however, data become non-linear as 𝜆 

> 0 (at 𝛽 = 10, 𝜆 = 0.26, 0.18, and 0.07 for 𝑋, 𝑌, and 𝑁, respectively, at Fr = 0.280) and 

𝐵 exhibits rather strong dependency on Fr for all variables (See Fig. 6-9, where 𝑋∗, 𝑌𝑣, 

and 𝑁𝑣 correspond to 𝐴; 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , and 𝑁𝑣𝑣𝑣  correspond to 𝐵; and Δ𝑢 corresponds to Fr).   

Time-histories of the forced PMM motions, and those of the responses in forces 

and moment are shown in Fig. 6-2 for pure sway (left column), pure yaw (center col-

umn), and yaw and drift tests (right column), respectively.  Forced motions are defined in 

equations (2.14a) – (2.14c) and (2.15) for pure sway, (2.16a)  – (2.16c) for pure yaw, and 

(2.17a) – (2.17b) for yaw and drift tests, respectively (typical examples of the motions are 

illustrated in Fig. 2-4 (b), (c), and (d), respectively).  Shown in Fig. 6-2 (a) are drift angle 

𝛽 for pure sway test (for 𝛽𝑚𝑎𝑥  = 2, 4, and 10 cases), heading 𝜓 for pure yaw (for 𝑟𝑚𝑎𝑥  

= 0.05, 0.15, 0.30, 0.45, 0.60, and 0.75 cases) and yaw and drift tests (for 𝛽 = 9, 10, and 

                                                 

9 𝜆 can be rewritten by using the mathematic models (2.19a), (2.19b), and (2.19c) for 𝑋, 𝑌, and 𝑁 

as: 

 𝜆 =
𝑋𝑣𝑣

𝑋∗
𝑣2;  

𝑌𝑣𝑣𝑣

𝑌𝑣
𝑣2;  

𝑁𝑣𝑣𝑣

𝑁𝑣
𝑣2  

respectively.   
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11 cases with 𝑟𝑚𝑎𝑥  fixed at 0.30), respectively.  Specific test conditions are summarized 

in Table 3-3.   

The responses in 𝑋, 𝑌, and 𝑁 shown in Fig. 6-2 are typically the 2
nd

-order domi-

nant oscillations for 𝑋 with super posed on the period-mean values, whereas the 1
st
-order 

dominant oscillations for 𝑌 and 𝑁 with phase shifted with respect to the forced motions, 

except for the yaw and drift.  For yaw and drift, the 1
st
-order oscillations are dominant 

with superposed on the period mean value for all variable.   The forces and moment time-

histories are expressed in Fourier series (FS) forms such as 

 

𝜒 𝑡 = 𝜒0 +  𝜒𝑛 cos 𝑛𝜔𝑡 + 𝜑𝜒𝑛  𝑛       (6.2)  

for 𝜒 = 𝑋, 𝑌, and 𝑁, where 𝜒0 is the period-mean of 𝜒, and 𝜒𝑛  and 𝜑𝜒𝑛  are the 𝑛th-order 

amplitude and phase terms, respectively.  In Table 6-1, the harmonic amplitudes 𝜒𝑛  for 𝑛 

= 1, … , 6 are presented in percentages of the data oscillation amplitudes and in averages 

of all 𝛽𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , and 𝛽 cases, respectively.  For pure sway, the 2
nd

-order amplitude 𝑋2 is 

the largest, 72.8%, while the 4
th

- and 6
th

-order amplitudes 𝑋4 and 𝑋6 are also fairly large, 

12.7% and 33.1%, respectively, for 𝑋; the 1
st
-order amplitudes 𝑌1 and 𝑁1 are predominant 

99.3% and 98%, respectively, whereas the higher-order amplitudes 𝑌3, 𝑌5 and 𝑁3, 𝑁5 are 

all small, less than about 3%, for 𝑌 and 𝑁.  For pure yaw, the overall trends are similar as 

for pure sway whereas the 3
rd

-order amplitudes 𝑌3 and 𝑁3 are relatively larger, 11.6% and 

5.8%, respectively.  For yaw and drift, the 1
st
-order amplitude 𝑋1 is dominant, 69.4%, but 

the higher-order amplitudes 𝑋2,3,4,5,6 are also large, about 10% - 30%, for 𝑋, and the 1
st
-

order amplitudes 𝑌1 and 𝑁1 are the largest, 93.5% and 98.0%, respectively, the 2
nd

-order 

amplitudes 𝑌2 and 𝑁2 are the 2
nd

 largest, 22.2% and 11.1%, respectively, and the higher-

order amplitudes 𝑌3,4,5,6 and 𝑁3,4,5,6 are all small, less than about 5%, for 𝑌 and 𝑁.   

The 1
st
-order phase angles 𝜑𝑌1 and 𝜑𝑁1 are seemingly constant from Fig. 6-2 

where 𝜑𝑌1 2𝜋  and 𝜑𝑁1 2𝜋  values about 0.09 (32) and 0.02 (9) for pure sway, about 
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0.28 (102) and 0.29 (105) for pure yaw, and about 0.29 and 0.28 for yaw and drift, re-

spectively.  However, those phase values are functions of the motion parameters such as 

𝑦𝑚𝑎𝑥 , 𝜓𝑚𝑎𝑥 , 𝜔, and/or 𝛽 (or 𝑣𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , 𝜔, and/or 𝑣) as will be discussed later. 

 

 

  



 

 

162 

1
6
2
 

Table 6-1 Harmonics of Dynamic Tests Time-histories (% Amplitude, Fr = 0.280).  

Test Var (𝜒) 𝜒1 𝜒2 𝜒3 𝜒4 𝜒5 𝜒6 

Pure sway 𝑋 - 72.8 - 12.7 - 33.1 

 𝑌 99.3 - 3.1 - 2.1 - 

 𝑁 98.0 - 2.5 - 0.4 - 

Pure yaw 𝑋 - 66.8 - 23.9 - 31.8 

 𝑌 89.2 - 11.6 - 2.9 - 

 𝑁 95.7 - 5.8 - 1.1 - 

Yaw and drift 𝑋 69.4 30.4 14.6 9.5 10.8 21.7 

 𝑌 93.5 22.2 5.8 2.1 1.6 1.9 

 𝑁 98.0 11.1 3.0 0.7 0.9 0.8 
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(a)  

 

 

(b) (c) 

  

Figure 6-1 Static drift test data (Corrected for symmetry): (a) 𝑋, (b) 𝑌, and (c) 𝑁.  Sym-
bols:  𝐹𝑟 = 0.138,  𝐹𝑟 = 0.280,  𝐹𝑟 = 0.410.  
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 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

Figure 6-2 Time-histories for pure sway (left), pure yaw (center), and yaw and drift 
(right) tests at Fr = 0.280 (Corrected for symmetry): Forced-motions (a) 𝛽 and 
𝜓; and responses in (b) 𝑋, (c) 𝑌, and (d) 𝑁.  
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6.1.2 Hydrodynamic Derivatives 

6.1.2.1 Static drift test 

Hydrodynamic derivatives 𝑋∗, 𝑋𝑣𝑣, 𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣  in the mathematic 

models (2.19) in Section 2.3.3 are presented in Table 6-2.  Those derivatives were deter-

mined by fitting the time-mean values of static drift 𝑋, 𝑌, and 𝑁 data shown in Fig. 6-1 to 

the polynomial equations (2.27) by using the relation 𝑣 = − sin 𝛽 derived in (2.13).  The 

polynomial coefficients 𝐴‟s and 𝐵‟s in (2.27) were evaluated by using a Least-Squared-

error (LS) method and then used in (2.28) to determined the derivatives. 

6.1.2.2 Dynamic tests 

Hydrodynamic derivatives in the mathematic models (2.20), (2.22), and (2.24) in 

Section 2.3.3 are determined from the pure sway, pure yaw, and yaw and drift tests data, 

respectively, through the harmonics forms of the mathematic models, (2.21), (2.23), and 

(2.25), respectively.  The harmonics 𝑋0, 𝑋𝑆𝑛 , 𝑋𝐶𝑛 , 𝑌0, 𝑌𝑆𝑛 , 𝑌𝐶𝑛 , 𝑁0, 𝑁𝑆𝑛 , and 𝑁𝐶𝑛  for 𝑛 = 

1, 2, or 3, in the mathematic models were evaluated as per (2.30) in Section 2.3.5 for the 

dynamic PMM tests 𝑋, 𝑌, and 𝑁 time-histories (e.g. Fig. 6-2), plotted in Figs. 6-3, 6-4, 

and 6-5 for pure sway, pure yaw, and yaw and drift tests data, respectively.  In the fig-

ures, the harmonics data are plotted against 𝑣𝑚𝑎𝑥 , 𝑣 𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , 𝑟 𝑚𝑎𝑥 , or 𝑣 as necessary per 

the mathematic models summarized in Table 2-3.  Determinations of hydrodynamic de-

rivatives are as per introduced in Section 2.3.5, either by using the „Multiple-Run‟ method 

(including MRL and MRH) or by using the „Single-Run‟ method (including SRL and SRH), 

as summarized in Tables 2-4 and 2-5, respectively. 

 

‘Multiple-Run’ method:  

Hydrodynamic derivatives using the MRL and MRH methods are presented in 

Tables 21 and 22, respectively.  Herein, the results for MRL are discussed first in the or-
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der of sway, yaw, and cross-coupled derivatives, and then the derivatives from MRH are 

compared with the MRL. 

Sway derivatives 𝑋𝑣𝑣 (including 𝑋∗), and 𝑌𝑣, 𝑌𝑣𝑣𝑣  and 𝑁𝑣, 𝑁𝑣𝑣𝑣 , and 𝑌𝑣  and 𝑁𝑣  are 

determined from the pure sway data FS harmonics, shown in Fig. 6-3 (a) 𝑋0, (c) 𝑌𝐶1 and 

𝑁𝐶1, and (d) 𝑌𝑆1 and 𝑁𝑆1, respectively, for 𝛽𝑚𝑎𝑥  = 2, 4, and 10 (correspond to 𝑣𝑚𝑎𝑥  = 

0.035, 0.070, and 0.174, respectively) cases.  From Fig. 6-3 (a) and (c), harmonics data 

exhibit quadratic for 𝑋0 and cubic for 𝑌𝐶1 and 𝑁𝐶1 trends with 𝑣𝑚𝑎𝑥  (i.e. with 𝛽𝑚𝑎𝑥 ), re-

spectively, similarly as static drift data discussed previously in Section 6.1.1.  However, 

the magnitudes of data are in general larger, smaller, and similar with (than) the static 

drift 𝑋, 𝑌, and 𝑁 data (shown as dashed lines), respectively.  When 𝜆 is defined10 simi-

larly as for static drift data in (6-1), with 𝛽 replaced with 𝛽𝑚𝑎𝑥 , then 𝜆 = 0.43, 0.25, and 

0.07 for 𝑋0, 𝑌𝐶1, and 𝑁𝐶1 at 𝛽𝑚𝑎𝑥  = 10, respectively, indicating that the non-linearity of 

those harmonics data are more stronger than the static drift 𝑋, 𝑌, and 𝑁 data (𝜆 = 0.26, 

0.18, and 0.07, respectively, at 𝛽 = 10 and at Fr = 0.280).  This will be discussed again 

later at the MRH method part.  𝑌𝑆1 and 𝑁𝑆1 data shown in Fig. 6-3 (d) exhibit linear trend 

with 𝑣 𝑚𝑎𝑥  as expected from their mathematic models presented Table 2-3.  In that 𝑌𝑆1 

and 𝑁𝑆1 stem from the acceleration terms („added-mass‟) in the mathematic models 

(2.20b) and (2.20c) and 𝑌𝐶1 and 𝑁𝐶1 from the velocity terms („damping‟), the ratios be-

tween the harmonics may of interest.  For 𝑌 as an example, 𝑌𝑆1 𝑌𝐶1  represents the ratio 

                                                 

10 𝜆 can be rewritten by using the mathematic models for 𝑋0, 𝑌𝐶1, and 𝑁𝐶1 shown in Table 2-3 

as: 

 𝜆 =
1

2

𝑋𝑣𝑣

𝑋∗
𝑣𝑚𝑎𝑥

2 ;  
3

4

𝑌𝑣𝑣𝑣

𝑌𝑣
𝑣𝑚𝑎𝑥

2 ;  
3

4

𝑁𝑣𝑣𝑣

𝑁𝑣
𝑣𝑚𝑎𝑥

2   

respectively. 
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between the „added-mass‟ and „damping‟ forces, which corresponds to the tangent value 

of the 1
st
-order phase of the 𝑌 time-history as11 

 

tan 𝜑𝑌1 =
𝑌𝑣 𝜔

𝑌𝑣 1+𝜆 
         (6.3)  

Similarly, tan 𝜑𝑁1 can be written by replacing 𝑌𝑣  and 𝑌𝑣 in (6-3) with 𝑁𝑣  and 𝑁𝑣, respec-

tively.  For 𝜆 = 0, then, the ratio (or the 1
st
-order phase) is a constant value, for present 

case, 0.730 and 0.135 (or, 𝜑𝑌1 = 36.1 and 𝜑𝑁1 = 7.7) for 𝑌 and 𝑁, respectively, for a 

given 𝜔 = 1.672, indicating that the „damping‟ force is larger than the „added-mass‟ force 

for 𝑌 and the former is predominant for 𝑁, respectively.   

𝑋∗, 𝑋𝑣𝑣, 𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣  are compared in Table 6-3 with those from the 

static drift data at Fr = 0.280 presented in Table 6-2.  In general, the linear derivatives 𝑋∗, 

𝑌𝑣, and 𝑁𝑣 are close to static drift values with ratios 1.02, 0.88, and 1.01, respectively, 

whereas the non-linear derivatives 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , and 𝑁𝑣𝑣𝑣  are larger with ratios 3.12, 1.53, 

and 1.30, respectively, possibly due to the stronger non-linearity in the pure sway FS 

harmonics data discussed previously. 

Yaw derivatives 𝑋𝑟𝑟  (including 𝑋∗), and 𝑌𝑟  and 𝑌𝑟𝑟𝑟 , and 𝑌𝑟 , and 𝑁𝑟  and 𝑁𝑟𝑟𝑟 , and 

𝑁𝑟  are determined from the pure yaw data FS harmonics, shown in Fig. 6-4 (a) 𝑋0, (c) 

𝑌𝑆1, (d) 𝑌𝐶1, (f) 𝑁𝑆1, and (g) 𝑁𝐶1, respectively, for 𝑟𝑚𝑎𝑥  = 0.05 – 0.75 cases at Fr = 0.138, 

0.280, and 0.410.  In general, 𝑋0, 𝑌𝑆1, and 𝑁𝑆1 in Fig. 6-4 (a), (c), and (f) exhibit curve 

shapes similar as the static drift 𝑋, 𝑌, and 𝑁 curves shown in Fig. 6-1.  However, pure 

                                                 

11 A combination of sine and cosine functions, 𝐴 sin 𝜔𝑡 + 𝐵 cos𝜔𝑡, can be rewritten as 

 𝐴2 + 𝐵2 ⋅ cos 𝜔𝑡 + 𝜑  where,  

 − tan 𝜑 = 𝐴 𝐵   

In this case, 𝐴 = 𝑌𝑆1 and 𝐵 = 𝑌𝐶1, where  𝑌𝑆1 = 𝑌𝑣 𝑣 𝑚𝑎𝑥  and 𝑌𝐶1 = − 𝑌𝑣𝑣𝑚𝑎𝑥 + 3

4
𝑌𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3  , 

which can be rewritten as  𝑌𝑆1 = 𝑌𝑣 𝜔 ⋅ 𝑣𝑚𝑎𝑥  and 𝑌𝐶1 = −𝑌𝑣𝜆 ⋅ 𝑣𝑚𝑎𝑥 , respectively. 
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yaw harmonics data are less non-linear with 𝑟𝑚𝑎𝑥  with 𝜆 = 0.08, 0.06, and 0.07, respec-

tively, at 𝑟𝑚𝑎𝑥  = 0.30 (𝜓𝑚𝑎𝑥  = 10.2) at Fr = 0.280, defined12 similarly as (6-1) with 𝛽 

replaced with 𝑟𝑚𝑎𝑥 , than static drift 𝑋, 𝑌, and 𝑁 data (𝜆 = 0.26, 0.18, and 0.07, respec-

tively, at 𝛽 = 10 and at Fr = 0.280).   𝑌𝐶1 and 𝑁𝐶1 shown in Fig. 6-4 (d) and (g) exhibit 

linear trend with 𝑟 𝑚𝑎𝑥  as expected from their mathematic models shown in Table 2-3, 

whereas more scatters in data curve-fits are observed (particularly for 𝑌𝐶1 at Fr = 0.280) 

than the pure sway 𝑌𝑆1 and 𝑁𝑆1 data shown in Fig. 6-3 (d).  The ratio 𝑌𝑆1 𝑌𝐶1  or 𝑁𝑆1 𝑁𝐶1  

can be similarly defined as (3) for pure sway as (See footnote 11) 

 

− tan 𝜑𝑌1 =
𝑌𝑟 1+𝜆 

𝑌𝑟 𝜔
         (6.4)  

and tan 𝜑𝑁1 as well, which are the ratios of the „damping‟ force to the „added-mass‟ 

force as discussed previously.  For 𝜆 = 0 (and for a fixed 𝜔 = 1.672), the ratios are 3.223 

and 4.144 (or, 𝜑𝑌1 = 107.2 and 𝜑𝑁1 = 103.6) for 𝑌 and 𝑁, respectively, at Fr = 0.280, 

indicating that the „damping‟ forces are about three and four times, respectively, larger 

than the „added-mass‟ forces. 

Cross-coupled derivatives 𝑋𝑣𝑟 , 𝑌𝑟𝑣𝑣  and 𝑁𝑟𝑣𝑣 , and 𝑌𝑣𝑟𝑟  and 𝑁𝑣𝑟𝑟  are from the yaw 

and drift data FS harmonics, shown in Fig. 6-5 (b) 𝑋𝑆1, (d) 𝑌0 and 𝑁0, and (e) 𝑌𝑆1 and 

𝑁𝑆1, respectively, for 𝛽 = 9, 10, and 11 (correspond to 𝑣 = -0.156, -0.174, and -0.191, 

respectively) cases.  𝑋𝑆1 in Fig. 6-5 (b) is solely due to the cross-couple effect between 

the sinusoidal yaw motion and the drift angle 𝛽, which is not measured from pure yaw 

tests.  Data exhibit roughly linear trend with 𝑣, however, with rather large scatters in the 

                                                 

12 𝜆 can be rewritten by using the mathematic models for 𝑋0, 𝑌𝑆1, and 𝑁𝑆1 shown in Table 2-3 as: 

 𝜆 =
1

2

𝑋𝑟𝑟

𝑋∗
𝑟𝑚𝑎𝑥

2 ;  
3

4

𝑌𝑟𝑟𝑟

𝑌𝑟
𝑟𝑚𝑎𝑥

2 ;  
3

4

𝑁𝑟𝑟𝑟

𝑁𝑟
𝑟𝑚𝑎𝑥

2   

respectively. 
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curve-fit.  𝑌0 and 𝑁0 shown in Fig. 6-5 (d) are from both of the drift angle 𝛽 and the 

cross-couple effect, and those harmonics values are about 11% and 5% larger at 𝛽 = 10 

than the static drift 𝑌 and 𝑁 at the same drift angle (shown as dashed and dash-dot lines, 

respectively).  𝑌𝑆1 and 𝑁𝑆1 in Fig. 6-5 (e) are from both of the sinusoidal yaw motion and 

the cross-couple effect.  Cross-couple effect is rather stronger for 𝑌𝑆1 and 𝑁𝑆1 than for 𝑌0 

and 𝑁0 cases, and their values at 𝛽 = 10 are about 89% and 44% larger than the pure 

yaw 𝑌𝑆1 and 𝑁𝑆1 data (shown as dashed and dash-dot lines, respectively) at the same 𝑟𝑚𝑎𝑥  

= 0.3 condition.   

Non-linear derivatives 𝑋𝑣𝑣, 𝑋𝑟𝑟 , 𝑌𝑣𝑣𝑣 , 𝑌𝑟𝑟𝑟 , 𝑌𝑣𝑟𝑟 , 𝑁𝑣𝑣𝑣 , 𝑁𝑟𝑟𝑟 , and 𝑁𝑣𝑟𝑟  determined 

using the MRH method are presented in Table 6-4.  For MRH, 𝑋𝑣𝑣 is determined from the 

2
nd

-order cosine harmonic 𝑋𝐶2 of pure sway data, shown in Fig. 6-3 (b), where the data 

exhibit quadratic trend with 𝑣𝑚𝑎𝑥  as expected from its mathematic model shown in Table 

2-3.  The MRH, however, gives rather smaller 𝑋𝑣𝑣 value than the MRL, with a ratio 0.27, 

nevertheless, the value is closer to static drift 𝑋𝑣𝑣 value with a ratio 0.85 than the MRL 

value (the ratio was 3.12 in Table 6-3).  The MRH gives smaller 𝑋𝑟𝑟  values than the MRL 

similarly for 𝑋𝑣𝑣, showing ratio values between 0.2 – 0.5 presented in Table 6-4.  This 

may indicate that the 𝑋 force in dynamic PMM is more non-linear than the 2
nd

-order, i.e., 

functions of 𝑣2 or 𝑟2 as assumed in the mathematic models (2.20a) and (2.22a), respec-

tively, and suggests to include higher order terms such as 𝑣4, 𝑣6 and 𝑟4, 𝑟6 to the ma-

thematic models, which result in additional terms 3

8
𝑋𝑣𝑣𝑣𝑣𝑣𝑚𝑎𝑥

4 , 5

16
𝑋𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑎𝑥

6  and 

3

8
𝑋𝑟𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

4 , 5

16
𝑋𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

6  to the 0
th

-order harmonic 𝑋0, respectively.  Those higher order 

terms as well result in the 4
th

- and the 6
th

-order harmonics 𝑋𝐶4 cos 4𝜔𝑡 and 𝑋𝐶6 cos 6𝜔𝑡 

to the 𝑋 mathematic models (2.21a) and (2.23a), which may explain the relatively larger 

𝑋4 and 𝑋6 in the pure sway and pure yaw 𝑋 time-histories discussed previously in Sec-

tion 6.1.1.  On the other hand, the 𝑌 derivatives such as 𝑌𝑣𝑣𝑣 , 𝑌𝑟𝑟𝑟 , and 𝑌𝑣𝑟𝑟  and the 𝑁 de-

rivatives such as 𝑁𝑣𝑣𝑣 , 𝑁𝑟𝑟𝑟 , and 𝑁𝑣𝑟𝑟  values from MRH are usually larger than those 

from MRL with the ratios about 1.0 – 3.0 except for a few cases as shown in Table 6-4. 
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‘Single-Run’ Method: 

Sway derivatives using the „Single-Run‟ (SR) method are shown in Fig. 6-6 for 

(a) linear derivatives 𝑌𝑣, 𝑁𝑣, 𝑌𝑣 , and 𝑁𝑣  including 𝑋∗ and (b) non-linear derivatives 𝑋𝑣𝑣, 

𝑌𝑣𝑣𝑣 , and 𝑁𝑣𝑣𝑣 , for 𝛽𝑚𝑎𝑥  = 2, 4, and 10 cases.  In the figures, the derivatives are shown 

as scaled values to the MRL for comparisons.  Typically, the linear derivatives shown in 

Fig. 6-6 (a) are close to MRL with ratios between 0.9 – 1.1 except for a few cases.  In 

contrast, the non-linear derivatives in Fig. 6-6 (b) are in general larger than MRL values 

with ratios 1.0 – 3.0 except for a few cases, showing a tendency to approach to the MRL 

values as 𝛽𝑚𝑎𝑥  increases.   

Yaw derivatives using the SR method are shown in Fig. 6-7 for (a) 𝑌𝑟 , 𝑁𝑟 , 𝑌𝑟 , and 

𝑁𝑟  including 𝑋∗ and (b) 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , and 𝑁𝑟𝑟𝑟 , respectively, for 𝑟𝑚𝑎𝑥  = 0.05 – 0.75 at Fr = 

0.138, 0.280, and 0.410 conditions, with scaled to the MRL values.  The overall trends are 

similar as the sway derivatives; values are close to MRL for the linear derivatives and 

larger than MRL for the non-linear derivatives.  The linear derivatives shown in Fig. 6-7 

(a) at small 𝑟𝑚𝑎𝑥  are in general smaller or larger than the MRL with ratios 0.1 – 1.7 and 

approach to the MRL values as 𝑟𝑚𝑎𝑥  increases, except for 𝑌𝑟  at Fr = 0.138 and 0.280, con-

tinuously decreasing with 𝑟𝑚𝑎𝑥 .  The non-linear derivatives shown in Fig. 6-7 (b) exhibit 

huge ratio values ranging between -210 and 60 (used in the figure are the absolute values 

for the log scale), decreasing with 𝑟𝑚𝑎𝑥  but still larger ratio values 0.5 – 3.5 at 𝑟𝑚𝑎𝑥  = 

0.75.    

Cross-coupled derivatives 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑁𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , and 𝑁𝑟𝑣𝑣  are shown in Fig. 6-8 

(a) with scaled to the MRL values, where the 𝑌𝑣𝑟𝑟  and 𝑁𝑣𝑟𝑟  are from the SRL method and 

those from the SRH are shown in Fig. 6-8 (b), respectively, for 𝛽 = 9, 10, and 11 cases.  

𝑋𝑣𝑟 , 𝑌𝑟𝑣𝑣 , and 𝑁𝑟𝑣𝑣  shown in Fig. 6-8 (a) are fairly close to the MRL values with ratios 

0.8 – 1.2.  The ratios for 𝑌𝑣𝑟𝑟  and 𝑁𝑣𝑟𝑟  using the SRL method shown in Fig. 6-8 (a) are 

relatively large, 0.5 – 1.4, whereas the ratios for those derivatives using the SRH method 
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shown in Fig. 6-8 (b) are very close to 1.0 for 𝑌𝑣𝑟𝑟  and relatively large, 1.4 – 1.7, for 

𝑁𝑣𝑟𝑟 , respectively. 

In summary, the „Single-Run‟ method gives the linear sway and yaw, and the 

cross-coupled derivatives similar values as the „Multiple-Run‟ method as the dynamic 

PMM motion becomes larger (i.e, larger 𝛽𝑚𝑎𝑥  and 𝑟𝑚𝑎𝑥  values), whereas it gives typical-

ly larger or smaller non-linear sway and yaw derivatives values particularly at smaller 

PMM motion conditions.  

 

Reconstruction Errors: 

The validities of the hydrodynamic derivatives determined using the „Multiple-

Run‟ and „Single-Run‟ methods are evaluated by examining the errors in reconstruction 

of forces and moment time-histories data.  Reconstructions are by using the mathematic 

models (2.21), (2.23), and (2.25) where first the harmonic amplitude terms such as 𝑋0, 

𝑋𝐶2, …, 𝑁𝑆3 are calculated using the derivatives values and then the time-histories of 𝑋, 

𝑌, and 𝑁 are reconstructed (also see Table 2-3).  Subsequently, the reconstruction error 

𝐸𝑅  is defined as  

 

𝐸𝑅 % =
  𝐷𝑖−𝑅𝑖 

𝑀
𝑖

  𝐷𝑖 
𝑀
𝑖

× 100        (6.5)  

where, 𝐷𝑖  is the measured data from the PMM tests, 𝑅𝑖  is the reconstructed data by using 

the mathematic models, subscript 𝑖 represents the time 𝑡𝑖 , and 𝑀 is the total number of 

data points.   

The 𝐸𝑅‟s in reconstructing the time-histories of pure sway, pure yaw, and yaw 

and drift data shown in Fig. 6-2 are calculated using the sway, yaw, and cross-coupled 

derivatives, respectively, using the „Multiple-Run‟ (MRL and MRH) and the „Single-Run‟ 

(SR) methods, and the average errors  𝐸𝑅
     for all 𝛽𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , and 𝛽 cases, respectively, 

are presented in Tables 6-5, 6-6, and 6-7, respectively.  For sway and yaw derivatives in 
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Tables 6-5 and 6-6, the 𝐸𝑅
    ‟s are the smallest for the derivatives using the MRL method, 

and the 𝐸𝑅
    ‟s for the derivatives using the MRH method are relatively larger in general.  

The 𝐸𝑅
    ‟s for derivatives using the SL method are typically large, particularly for the de-

rivatives from the smallest motion cases such as the sway derivatives from the pure sway 

data for 𝛽𝑚𝑎𝑥  = 2 case (SR2) and the yaw derivatives from the pure yaw data for 𝑟𝑚𝑎𝑥  = 

0.30 case (SR0.30), and tend to decrease as the PMM motions become large, showing sim-

ilar values as the MRH in general.  In Table 6-5, the 𝐸𝑅
    ‟s for the sway derivatives from 

the static drift test are compared with those from the pure sway test, of which values are 

relatively larger than those for MRL method but close to those for MRH method case.  For 

cross-coupled derivatives in Table 6-7, the 𝐸𝑅
    ‟s are similarly small for all method cases 

as the yaw and drift motions are sufficiently large (𝛽 = 9, 10, and 11 and 𝑟𝑚𝑎𝑥  = 0.30) 

from which the derivatives are determined.  Consequently, the „Multiple-Run‟ (MRL) me-

thod is more rigorous than the „Single-Run‟ method determining the hydrodynamic deriv-

atives and the latter method is suggested only when the PMM motions are large enough. 

6.1.2.3 Speed variation test 

Surge derivatives were evaluated as per Section 2.3.5 using the sway and yaw de-

rivatives determined previously for three Fr‟s, 0.138, 0.280, and 0.410, cases.  For this, 

the sway derivatives from the static drift tests (Table 6-2) and the yaw derivatives using 

the MRL method (Table 6-3) were used, which are shown in Fig. 6-9 as functions surge 

velocity, 𝑢.  In the figure, surge velocity is non-dimensionalized such that Δ𝑢 =

 𝑢 − 𝑈 𝑈 , where 𝑢 is the surge velocity at each Fr and 𝑈 is that at Fr where the surge 

derivatives are determined (herein, Fr = 0.280).  In the figure, all derivatives were norma-

lized with the values at Fr = 0.280.  From Fig. 6-9 (a), for sway derivatives, 𝑋∗ and 𝑋𝑣𝑣 

show strong dependency on Δ𝑢, i.e. Fr, with their normalized values changing between 

1.1 to 1.5 and 0.2 to 1.0, respectively.  Whereas 𝑌𝑣 and 𝑁𝑣 are almost independent on Δ𝑢 

showing the normalized values ranging between 0.9 and 1.0 and 0.8 and 1.0, respectively.  



 

 

173 

1
7
3
 

The yaw derivatives in Fig. 6-9 (b) show similar trends.  The normalized 𝑋𝑟𝑟  values in-

crease rather monotonically from 0.3 to 1.4 within the speed range, and the normalized 𝑌𝑟  

and 𝑁𝑟  values vary moderately between 0.6  1.1 and 0.8  1.0.  In summary, typically 

the linear derivative such 𝑌𝑣, 𝑁𝑣, 𝑌𝑟 , and 𝑁𝑟  are nearly in dependent with the speed (Fr) 

changes, whereas the non-linear derivatives 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 , 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , and 𝑁𝑟𝑟𝑟  exhibit 

rather strong dependency on the speed (Fr) changes.   

Subsequently, those derivatives were curve fitted to the 2
nd

-order polynomial 

functions of Δ𝑢 as per equation (2.35), from which surge derivatives such as 𝑋𝑢 , 𝑋𝑢𝑢  and 

𝑋𝑣𝑣𝑢 , 𝑌𝑣𝑢 , 𝑌𝑣𝑢𝑢 , 𝑁𝑣𝑢 , 𝑁𝑣𝑢𝑢  are evaluated using (2.36) and (2.37), respectively, and pre-

sented in Table 26.  Note that the derivatives 𝑋𝑢𝑢𝑢  and 𝑋𝑣𝑟𝑢  are not evaluated herein due 

to the limited number of Fr cases in the present PMM test matrix (shown in Table 3-3) 

for static drift and yaw and drift tests, respectively.  
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Table 6-2 Hydrodynamic Derivatives (Static Drift).  

Derivative Fr = 0.138 Fr = 0.280 Fr = 0.410 

𝑋∗ -0.0182 -0.0170 -0.0258 

𝑋𝑣𝑣  -0.0301 -0.1528 -0.1544 

𝑌𝑣 -0.2637 -0.2961 -0.2963 

𝑌𝑣𝑣𝑣  -1.6256 -1.9456 -3.7914 

𝑁𝑣 -0.1396 -0.1667 -0.1717 

𝑁𝑣𝑣𝑣  -0.3426 -0.4355 -1.2591 

 

 

 

Table 6-3 Hydrodynamic Derivatives (MRL Method).  

Derivative Fr = 0.280 Derivative Fr = 0.138 Fr = 0.280 Fr = 0.410 Derivative Fr = 0.280 

𝑋∗ -0.0173 (1.02) 𝑋∗ -0.0181 (0.99) -0.0177 (1.04) -0.0260 (1.01)   

𝑋𝑣𝑣  -0.4765 (3.12) 𝑋𝑟𝑟  -0.0078 -0.0282 -0.0385 𝑋𝑣𝑟   0.0819 

𝑌𝑣 -0.2601 (0.88) 𝑌𝑟  -0.0276 -0.0485 -0.0548 𝑌𝑣𝑟𝑟  -0.8682 

𝑌𝑣𝑣𝑣  -2.9686 (1.53) 𝑌𝑟𝑟𝑟  -0.0370 -0.0452 -0.0710 𝑌𝑟𝑣𝑣  -1.5172 

𝑁𝑣 -0.1681 (1.01) 𝑁𝑟  -0.0382 -0.0485 -0.0548 𝑁𝑣𝑟𝑟  -0.1989 

𝑁𝑣𝑣𝑣  -0.5677 (1.30) 𝑁𝑟𝑟𝑟  -0.0211 -0.0505 -0.0821 𝑁𝑟𝑣𝑣  -0.7220 

𝑌𝑣  -0.1135 𝑌𝑟  -0.0146 -0.0090 -0.0127   

𝑁𝑣  -0.0136 𝑁𝑟  -0.0065 -0.0070 -0.0077   

 (  ): ratio to static drift  

 

 

 

 

Table 6-4 Hydrodynamic Derivatives (MRH Method).  

Derivative Fr = 0.280 Derivative Fr = 0.138 Fr = 0.280 Fr = 0.410 Derivative Fr = 0.280 

𝑋𝑣𝑣  -0.1296 (0.27) 𝑋𝑟𝑟  -0.0016 (0.21) -0.0132 (0.47) -0.0163 (0.42)   

𝑌𝑣𝑣𝑣  -2.2962 (0.77) 𝑌𝑟𝑟𝑟  -0.0927 (2.51) -0.1305 (2.89) -0.1210 (1.70) 𝑌𝑣𝑟𝑟  -0.9066 (1.04) 

𝑁𝑣𝑣𝑣  -0.8533 (1.50) 𝑁𝑟𝑟𝑟  -0.0312 (1.48) -0.0473 (0.94) -0.0387 (0.47) 𝑁𝑣𝑟𝑟  -0.3161 (1.59) 

 (  ): ratio to MRL 
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Table 6-5 Reconstruction Errors (Sway derivatives).  

Errors Var. MRL 1)MRH SR2 SR4 SR10 
2)Static drift 

𝐸𝑅
    (%) 𝑋 9.4 12.0 22.8 9.4 19.5 12.2 

 𝑌 5.5 6.2 5.1 10.1 7.3 10.5 

 𝑁 2.9 4.0 30.2 6.1 3.9 3.6 

1) 𝑌𝑣 , 𝑁𝑣 , 𝑌𝑣, and 𝑁𝑣 from the MRL were used for reconstructions  
2) 𝑌𝑣  and 𝑁𝑣  from the MRL were used for reconstructions 

 

 

Table 6-6 Reconstruction Errors (Yaw derivatives). 

Errors Var. MRL 1)MRH SR0.05 SR0.15 SR0.30 SR0.45 SR0.60 SR0.75 

𝐸𝑅
    (%) 𝑋 7.6 9.5 549.4 52.2 12.1 8.5 9.2 13.8 

 𝑌 17.2 29.5 106.2 56.3 25.2 27.2 31.2 45.7 

 𝑁 5.2 5.2 616.2 22.4 5.3 6.6 5.5 6.7 

1) 𝑌𝑟 , 𝑌𝑟 , 𝑁𝑟 , 𝑁𝑟  values from the MRL method were used for reconstructions. 

 

 

Table 6-7 Reconstruction
1)

 Errors (Cross-coupled derivatives).  

Errors Var. MRL 2)MRH SRL9 SRL10 SRL11 
3)SRH9 

3)SRH10 
3)SRH11 

𝐸𝑅
    (%) 𝑋 11.0 - 11.1 11.0 11.0 - - - 

 𝑌 3.5 3.5 3.6 5.2 5.5 3.6 3.5 3.7 

 𝑁 2.7 3.0 2.4 2.4 4.6 2.9 2.5 3.6 

1) For reconstructions, 𝑋∗, 𝑋𝑣𝑣 , 𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣  from static drift, and 𝑌𝑟 , 𝑌𝑟 , 𝑌𝑟𝑟𝑟 , 𝑁𝑣 , 𝑁𝑟 , and 𝑁𝑟𝑟𝑟  using the MRL me-
thod were used. 

3) 𝑋𝑣𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑟𝑣𝑣  using MRL were used for reconstructions  
4) 𝑋𝑣𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑟𝑣𝑣  using SRL were used for reconstructions. 

 

 

 

 

Table 6-8  Surge-derivatives (Fr = 0.280).  

Derivative Value Derivative Value 

𝑋𝑢  -0.0088   

𝑋𝑢𝑢  -0.0220   

𝑋𝑣𝑣𝑢  -0.1172 𝑋𝑟𝑟𝑢  -0.0308 

𝑌𝑣𝑢  -0.0307 𝑌𝑟𝑢  -0.0268 

𝑌𝑣𝑢𝑢   0.0653 𝑌𝑟𝑢𝑢   0.0284 

𝑁𝑣𝑢  -0.0311 𝑁𝑟𝑢  -0.0183 

𝑁𝑣𝑢𝑢   0.0439 𝑁𝑟𝑢𝑢  -0.0066 
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(a) (b)  

  

 

(c) (d) (e) 

   

Figure 6-3 Pure sway 𝑋, 𝑌, and 𝑁 data FS harmonics: (a) 𝑋0, (b) 𝑋𝐶2, (c) 𝑌𝐶1and 𝑁𝐶1, (d) 
𝑌𝑆1 and 𝑁𝑆1, and (e) 𝑌𝐶3 and 𝑁𝐶3.  
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(a) (b)  

  

 

 (c) (d) (e) 

   
(f) (g) (h) 

   

Figure 6-4 Pure yaw 𝑋, 𝑌, and 𝑁 data FS harmonics: (a) 𝑋0, (b) 𝑋𝐶2, (c) 𝑌𝑆1, (d) 𝑌𝐶1, (e) 
𝑌𝑆3, (f) 𝑁𝑆1, (g) 𝑁𝐶1, and (h) 𝑁𝑆3. Simbols: , Fr = 0.138; , Fr = 0.280; , Fr 
= 0.410.  
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h)  

  

 

Figure 6-5 Yaw and drift 𝑋, 𝑌, and 𝑁 data FS harmonics: (a) 𝑋0, (b) 𝑋𝑆1, (c) 𝑋𝐶2, (d) 𝑌0 
and 𝑁0, (e) 𝑌𝑆1 and 𝑁𝑆1, (f) 𝑌𝐶1 and 𝑁𝐶1, (g) 𝑌𝐶2 and 𝑁𝐶2, and (h) 𝑌𝑆3 and 𝑁𝑆3.  
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(a) (b) 

  

Figure 6-6 Single-run method (sway derivatives): (a) linear and (b) non-linear deriva-
tives.  Hydrodynamic derivatives shown are scaled with MRL.  

(a) (b) 

  

Figure 6-7 Single-run method (yaw derivatives): (a) linear and (b) non-linear derivatives.  
Hydrodynamic derivatives shown are scaled with MRL.  
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(a) (b) 

  

Figure 6-8 Single-Run method (cross-coupled derivatives): (a) SRL (b) SRH.  Hydrody-
namic derivatives shown are scaled with MRL.  

(a) (b) 

  

Figure 6-9 Speed variation test: Hydrodynamic derivatives with surge velocity change 
Δ𝑢: (a) Sway and (b) yaw derivatives.  Hydrodynamic derivatives shown are 
scaled with the values at Δ𝑢 = 0 (Fr = 0.280).  
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6.1.3 Comparisons between Facilities 

Forces and moment and subsequent hydrodynamic derivatives from three facili-

ties (IIHR, FORCE, and INSEAN) are compared.  All the facilities shared the same geo-

metry (DTMB 5415) and the same PMM test matrix (Table 3-3, for the FRz condition 

only).  The model length L used for each facility is 3.048 m, 4.002 m, and 5.720 m, re-

spectively, and the specific model particulars are summarized in Table 3-1.  The compar-

isons include evaluations of the standard deviation13 from the facility mean values (the 

mean values of the three facilities data) of the time-mean values of 𝑋, 𝑌, and 𝑁 data for 

static drift test and those of the harmonic amplitude and phase of the time-histories data 

as per (2) for dynamic tests.  Herein, the standard deviation values are presented in per-

cent of the facility mean values.  Subsequently, hydrodynamic derivatives are compared 

between the facilities data and possible effects of model size are discussed. 

Static drift 𝑋, 𝑌, and 𝑁 are shown in Fig. 6-10 (a), (b), and (c), respectively, for 

Fr = 0.138 (left), 0.280 (middle), and 0.410 (right) cases, respectively.  The facility mean 

and standard deviation values of 𝑋, 𝑌, and 𝑁 data at 𝛽 = 10 for the three Fr cases are 

presented in Table 6-9.  From Fig. 6-10 (a), 𝑋 data exhibit relatively large deviations 

from facility to facility with standard deviations about 9% - 11% at 𝛽 = 10.  𝑌 and 𝑁 

data in Fig. 6-10 (b) and (c) in general show good agreements between facilities, where 

the standard deviations at 𝛽 = 10 are about 1% - 4% except for a few cases.  In the fig-

ure, data are curve fitted (solid lines for FORCE and INSEAN, and dashed lines for 

IIHR) to quadratic, 𝑋 = 𝐴 + 𝐵𝛽2, and cubic, 𝑌, 𝑁 = 𝐴𝛽 + 𝐵𝛽3, functions similarly as 

discussed in Section 6.1.1.  For 𝑋 in Fig. 6-10 (a), the intercept 𝐴 is different from facility 

to facility, more or less, whereas the 2
nd

-order coefficient 𝐵 is seemingly similar between 

                                                 

13 Although the number of facilities, three, is minimal for a normal distribution, nevertheless the 

standard deviation shows a value close to the average deviation of data from the facility mean 

values. 
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facilities except for the Fr = 0.138 case.  For 𝑌 and 𝑁 in Fig. 6-10 (b) and (c), the 1
st
-

order (linear) coefficient 𝐴 is similar between facilities, whereas the 3
rd

-order (non-linear) 

coefficient 𝐵 is different from facility to facility in general.  The quantitative compari-

sons of those coefficients will be discussed later with related to the comparisons of the 

sway derivatives.   

Dynamic test time-histories of 𝑋, 𝑌, and 𝑁 are shown in Fig. 6-11 (a), (b), and (c), 

respectively, for pure sway (left, 𝛽𝑚𝑎𝑥  = 10 case), pure yaw (middle, 𝑟𝑚𝑎𝑥  = 0.30 case), 

and yaw and drift (right, 𝛽 = 10 case) tests for Fr = 0.280 case, respectively.  While the 

data exhibit in general good agreements between facilities, the mean and standard devia-

tion values of the dominant harmonic amplitude and phase are presented in Table 6-10.  

In Fig. 6-11 (a), 𝑋 time-histories show relatively large deviations between facilities data.  

Nonetheless, the standard deviations of the 0
th

-order amplitude 𝑋0 are fairly small, 

14.9%, 6.2%, and 7.5% for pure sway, pure yaw, and yaw and drift tests, respectively, 

whereas those of the 2
nd

-order amplitude 𝑋2 and phase 𝜑𝑋2 (for yaw and drift 𝑋1 and 𝜑1) 

are in general large, 42.9%, 8.3%, and 69.2%, respectively, for the former, and 5.8%, 

307.3%, and 76.8%, respectively, for the latter.  For 𝑌 and 𝑁, the time-histories shown in 

Fig. 6-11 (b) and (c) exhibit good agreements between facilities, where the standard devi-

ations of the 1
st
-order amplitude 𝑌1 and phase 𝜑𝑌1 are small, about 4% - 6% and about 

2% - 10%, respectively, for all test types.  For yaw and drift 𝑌 and 𝑁, the standard devia-

tions of the 0
th

-order amplitude 𝑌0 and 𝑁0 are also small about 2%. 

Hydrodynamic derivatives from the facilities data are compared in Tables 6-11 

through 6-14 for the sway, yaw, cross-coupled, and surge derivatives, respectively.  Pre-

sented in the tables are the facility mean and standard deviation values and the ratio val-

ues of each facility data to the facility mean values.  The sway velocity derivatives 𝑋𝑣𝑣, 

𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣 , including 𝑋∗, are determined from the static drift data and the 

sway acceleration derivatives 𝑌𝑣  and 𝑌𝑣  are from the pure sway data using the MRL me-

thod.  The yaw derivatives 𝑋𝑟𝑟 , 𝑌𝑟 , 𝑌𝑟𝑟𝑟 , 𝑌𝑟 , 𝑁𝑟 , 𝑁𝑟𝑟𝑟 , and 𝑁𝑟  and the cross-coupled de-
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rivatives 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑣𝑟𝑟 , and 𝑁𝑟𝑣𝑣  are as well using the MRL method.  The surge 

derivatives 𝑋𝑢 , 𝑋𝑢𝑢 , 𝑋𝑣𝑣𝑢 , 𝑌𝑣𝑢 , 𝑌𝑣𝑢𝑢 , 𝑁𝑣𝑢 , 𝑁𝑣𝑢𝑢 , 𝑋𝑟𝑟𝑢 , 𝑌𝑟𝑢 , 𝑌𝑟𝑢𝑢 , 𝑁𝑟𝑢 , and 𝑁𝑟𝑢𝑢  are de-

rived from the aforementioned sway and yaw derivatives as per (2.36) and (2.37) in Sec-

tion 2.3.5. 

Sway and yaw derivatives are compared in Tables 6-11 and 6-12 where the facili-

ty mean and standard deviation values are presented.  For sway derivatives, 𝑋∗ and 𝑋𝑣𝑣 

correspond to the intercept 𝐴 and the 2
nd

-order coefficient 𝐵 of the static drift 𝑋 data 

curve fits, and 𝑌𝑣, 𝑁𝑣 and 𝑌𝑣𝑣 , 𝑁𝑣𝑣𝑣  correspond to the 1
st
- and 3

rd
-order coefficients 𝐴 and 

𝐵 of the static drift 𝑌 and 𝑁 data curve fits, respectively, discussed previously.  Recalling 

Fig. 6-10 (a), the standard deviation of the intercept values of 𝑋 data (𝑋∗) is relatively 

large, about 10% - 14%, whereas the standard deviation of the 2
nd

-order coefficient (𝑋𝑣𝑣) 

is relatively small, about 7% - 10% except for the Fr = 0.138 case.  For 𝑌 and 𝑁 in Fig. 

6-10 (b) and (c), the standard deviations of the 1
st
-order coefficients (𝑌𝑣 and 𝑁𝑣) are 

small, about 2% - 7%, whereas the 3
rd

-order coefficients (𝑌𝑣𝑣𝑣  and 𝑁𝑣𝑣𝑣) are large, about 

10% - 30%.  On the other hand, from Table 6-11, the standard deviations of the sway ac-

celeration derivatives 𝑌𝑣  and 𝑁𝑣  are small, 4.4% and 8.8%, respectively.  Similar overall 

trends in comparisons are observed from the yaw derivatives in Table 6-12; relatively 

small deviations of linear derivatives and large deviations of non-linear derivative, whe-

reas the standard deviation values are rather larger than the sway derivatives cases.  The 

standard deviations of the linear derivatives 𝑌𝑟  and 𝑁𝑟  are about 5% - 27%, while those of 

the non-linear derivatives 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , and 𝑁𝑟𝑟𝑟  are fairly large, 37% - 91%, 15% - 72%, 

and 20% - 55%, respectively.  The standard deviations of 𝑌𝑟  and 𝑁𝑟  are 21% - 34% and 

15% - 25%, respectively, which are larger than the sway acceleration derivatives cases. 
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Ratios of the derivative values to the facility means presented in Tables 6-11 and 

6-12 are plotted against the model length in Figs. 6-12 and 6-13 for sway and yaw deriva-

tives, denoted with a „*‟ symbol, respectively, revealing the possible effect of model size.  

In the figures, the model lengths of each facility, IIHR, FORCE, and INSEAN, are scaled 

with the smallest model size corresponding to L
*
 = L/L3.048 m = 1.0, 1.31, and 1.88, re-

spectively.  Subsequently, the ratio values are linear-curve fitted to y = AL
*
 + B, where 

the coefficient A = y/L
*
 indicates the amount of change of derivative value, y, (in 

fraction of the facility mean value) as the model size is doubled, i.e L
*
 = 1.  From Fig. 

6-12 (a), the ratios of the linear derivatives, 𝑌𝑣
∗ and 𝑁𝑣

∗, are close to 1.0 whereas the ratios 

of the non-linear derivatives, 𝑋𝑣𝑣
∗ , 𝑌𝑣𝑣𝑣

∗ , and 𝑁𝑣𝑣𝑣
∗ , are distributed over a rather wide range 

in general between 0.6 and 1.04.  The curve-fit coefficient A‟s for the linear and non-

linear derivatives are near to zero, 0.01 and -0.03, respectively, indicating that the deriva-

tives are nearly independent of model size.  The ratios 𝑌𝑣 
∗ and 𝑁𝑣 

∗ shown in Fig. 6-12 (b) 

are also near to 1.0, similarly as 𝑌𝑣
∗ and 𝑁𝑣

∗, whereas the values tend to decrease with 

model size, however, the number of data (6 points) is very limited for a general remark.  

From Fig. 6-13 (a), the ratios of the linear derivatives, 𝑌𝑟
∗ and 𝑁𝑟

∗, are close to 1.0 distri-

buted between 0.8 and 1.2, whereas the ratios of the non-linear derivatives, 𝑋𝑟𝑟
∗ , 𝑌𝑟𝑟𝑟

∗ , and 

𝑁𝑟𝑟𝑟
∗  are distributed over a quite wide range between 0.2 and 1.8.  The curve-fit coeffi-

cient A‟s are 0.14 and -0.16 for the linear and non-linear derivatives, respectively, indi-

cating that those derivatives values can increase 14% and decrease 16%, respectively, as 

the model length is doubled.  The ratios of yaw acceleration derivatives, 𝑌𝑟 
∗ and 𝑁𝑟 

∗, exhi-

bit rather strong dependency on the model size as shown in Fig. 6-13 (b).  The curve-fit 

coefficient A is large, A = 0.52, meaning that 𝑌𝑟  and 𝑁𝑟  values can increase as much as 

52% as the model size is doubled.  In summary, generally, sway derivatives are nearly 

independent of model size whereas yaw derivatives (particularly yaw acceleration deriva-

tives) exhibit considerable dependency on the model size.  However, general conclusions 
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are precluded for the non-linear derivatives due to large scatters in the ratio values distri-

butions. 

Cross-coupled derivatives and Surge derivatives are compared in Tables 6-13 and 

6-14, respectively.  The standard deviations from and the ratios to the facility mean val-

ues of those derivatives values are typically larger than those for the sway and yaw deriv-

atives, and clear trends with the model size are not observed for those derivatives. 

  



 

 

186 

1
8
6
 

Table 6-9 Comparisons between Facilities: Static drift test (𝛽 = 10). 

Var. 
Fr = 0.138 Fr = 0.280 Fr = 0.410 

Mean StDev(%) Mean StDev(%) Mean StDev(%) 

𝑋 -0.0176 9.2 -0.0197 10.7 -0.0281 9.2 

𝑌 0.0559 3.4 0.0616 1.0 0.0746 6.3 

𝑁 0.0250 7.5 0.0300 3.9 0.0372 4.1 

 

 

 

 

 

Table 6-10 Comparisons between Facilities: Dynamic tests (Fr = 0.280).  

Var. Harmonics 
Pure sway Pure yaw Yaw and drift 

Mean StDev(%) Mean StDev(%) Mean StDev(%) 

𝑋 𝑋0 -0.0210 14.9 -0.0182 6.2 -0.0225 7.5 

 𝑋2 0.0017 42.9 0.0007 8.3 1)0.0026 69.2 

 𝜑𝑋2 -0.75 𝜋 5.8 -0.18 𝜋 307.3 2)0.25 𝜋 76.8 

𝑌 𝑌0 - - - - 0.0698 2.0 

 𝑌1 0.0665 3.8 0.0175 6.4 0.0318 6.1 

 𝜑𝑌1 0.17 𝜋 7.0 0.58 𝜋 2.1 0.59 𝜋 3.2 

𝑁 𝑁0 - - - - 0.0333 1.6 

 𝑁1 0.0315 3.7 0.0153 5.8 0.0221 5.8 

 𝜑𝑁1 0.04 𝜋 10.1 0.59 𝜋 2.2 0.57 𝜋 1.8 

1) 𝑋1 and 2) 𝜑𝑋1 for yaw and drift test. 
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Table 6-11 Comparisons between Facilities (Sway derivatives).  

Derivative Fr Mean 
StDev 

(%) 

Facility data (ratio to Mean) 

IIHR FORCE INSEAN 

𝑋∗ 0.138 -0.0164 13.7 1.11 1.04 0.85 

 0.280 -0.0155 12.4 1.10 1.05 0.86 

 0.410 -0.0239 9.8 1.08 1.03 0.89 

𝑌𝑣 0.138 -0.2673 5.4 0.99 0.95 1.06 

 0.280 -0.3000 1.8 0.99 0.99 1.02 

 0.410 -0.2941 2.9 1.01 1.02 0.97 

𝑁𝑣 0.138 -0.1351 5.9 1.03 1.04 0.93 

 0.280 -0.1628 2.2 1.02 1.00 0.98 

 0.410 -0.1749 7.0 0.98 0.94 1.08 

𝑋𝑣𝑣  0.138 -0.0427 51.6 0.70 0.70 1.60 

 0.280 -0.1421 6.5 1.08 0.96 0.96 

 0.410 -0.1392 9.5 1.11 0.94 0.96 

𝑌𝑣𝑣𝑣  0.138 -1.7940 13.9 0.91 1.16 0.93 

 0.280 -1.7875 7.8 1.09 0.97 0.94 

 0.410 -4.5105 25.7 0.84 0.86 1.30 

𝑁𝑣𝑣𝑣  0.138 -0.2866 31.2 1.20 1.16 0.64 

 0.280 -0.3284 31.0 1.33 0.96 0.71 

 0.410 -1.3113 11.0 0.96 1.12 0.92 

𝑌𝑣  0.280 -0.1111 4.4 1.02 1.03 0.95 

𝑁𝑣  0.280 -0.0131 8.8 1.04 1.07 0.90 

 

 

 

Table 6-12 Comparisons between Facilities (Yaw derivatives).  

Derivative Fr Mean 
StDev 

(%) 

Facility (ratio to Mean) 

IIHR FORCE INSEAN 

𝑌𝑟  0.138 -0.0313 15.3 0.88 1.17 0.95 

 0.280 -0.0457 27.2 1.06 0.70 1.24 

 0.410 -0.0572 5.6 0.96 0.98 1.06 

𝑁𝑟  0.138 -0.0372 5.8 1.03 0.93 1.04 

 0.280 -0.0487 5.4 0.94 1.05 1.01 
 0.410 -0.0543 14.5 0.84 1.03 1.13 

𝑋𝑟𝑟  0.138 -0.0090 36.9 0.87 0.71 1.42 

 0.280 -0.0191 41.5 1.48 0.71 0.81 

 0.410 -0.0190 91.4 2.03 0.68 0.29 

𝑌𝑟𝑟𝑟  0.138 -0.0454 31.5 0.82 0.82 1.36 

 0.280 -0.0570 71.8 0.79 1.80 0.41 
 0.410 -0.0608 14.6 1.17 0.93 0.90 

𝑁𝑟𝑟𝑟  0.138 -0.0255 31.8 0.83 0.81 1.37 

 0.280 -0.0342 55.3 1.48 0.39 1.13 

 0.410 -0.0773 20.1 1.06 0.78 1.16 

𝑌𝑟  0.138 -0.0162 21.0 0.90 0.86 1.24 

 0.280 -0.0136 33.3 0.66 1.01 1.33 

 0.410 -0.0184 33.5 0.69 0.95 1.36 

𝑁𝑟  0.138 -0.0073 17.8 0.89 0.91 1.21 

 0.280 -0.0096 24.6 0.73 1.07 1.21 

 0.410 -0.0092 14.6 0.83 1.06 1.10 
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Table 6-13 Comparisons between Facilities (Cross-coupled derivatives).  

Derivative Mean 
StDev 

(%) 

Facility (ratio to Mean) 

IIHR FORCE INSEAN 

𝑋𝑣𝑟  0.0300 152.1 2.73 0.39 -0.12 

𝑌𝑣𝑟𝑟  -1.3683 42.7 1.48 0.65 0.87 

𝑁𝑣𝑟𝑟  -0.4011 64.3 1.72 0.48 0.81 

𝑌𝑟𝑣𝑣  -1.7067 12.1 1.10 1.03 0.87 

𝑁𝑟𝑣𝑣  -0.5512 20.8 0.79 1.00 1.21 

 

 

 

 

Table 6-14 Comparisons between Facilities (Surge derivatives).  

Derivative Mean 
StDev 

(%) 

Facility (ratio to Mean) 

IIHR FORCE INSEAN 

𝑋𝑢  -0.0087 2.3 1.01 1.01 0.97 

𝑋𝑢𝑢  -0.0205 7.9 1.07 1.00 0.92 

𝑋𝑣𝑣𝑢  -0.0903 31.6 1.30 1.03 0.67 

𝑋𝑟𝑟𝑢  -0.0094 212.5 3.28 0.65 -0.93 

𝑌𝑣𝑢  -0.0242 98.7 1.27 1.83 -0.09 

𝑁𝑣𝑢  -0.0397 54.3 0.78 0.60 1.62 

𝑌𝑣𝑢𝑢  0.0794 18.2 0.82 0.99 1.19 

𝑁𝑣𝑢𝑢  0.0294 71.3 1.49 1.33 0.18 

𝑌𝑟𝑢  -0.0265 14.3 1.01 0.85 1.14 

𝑁𝑟𝑢  -0.0208 12.5 0.88 1.00 1.13 

𝑌𝑟𝑢𝑢  0.0033 1728.6 8.61 -19.03 13.45 

𝑁𝑟𝑢𝑢  0.0034 486.6 -1.94 6.56 -1.65 
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 𝐹𝑟 = 0.138 𝐹𝑟 = 0.280 𝐹𝑟 = 0.410 

(a) 

   

(b) 

   

(c) 

   

Figure 6-10 Comparisons between facilities – Static drift data (Corrected for symmetry): 
(a) 𝑋, (b) 𝑌, and (c) 𝑁 at Fr =0.138 (left), 0.280 (center), 0.410 (right), respe-
citively.  Symbols: , IIHR; , FORCE; , INSEAN.  
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 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

Figure 6-11 Comparisons between facilities – Dynamic tests data (Corrected for symme-
try): (a) 𝑋, (b) 𝑌, and (c) 𝑁 for pure sway (left, 𝛽𝑚𝑎𝑥  = 10), pure yaw (center, 
𝑟𝑚𝑎𝑥  = 0.30), and yaw and drift (right, 𝛽 = 10) tests at Fr = 0.280, respective-
ly.  Symbols (colors):  , IIHR; , FORCE; and , INSEAN.   
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(a) (b) 

  

Figure 6-12 Comparisons between facilities: (a) sway-velocity and (b) -acceleration de-
rivatives.  Derivatives and model lengths are scaled values.  Symbols: , 𝑋𝑣𝑣; 
, 𝑌𝑣

∗, 𝑌𝑣𝑣𝑣
∗ , or 𝑌𝑣 

∗; and , 𝑁𝑣
∗, 𝑁𝑣𝑣𝑣

∗ , or 𝑁𝑣 
∗, respectively.  Color codes: Fr = 

0.138 (blue), 0.280 (red), and 0.410 (green), respectively.   

(a) (b) 

  

Figure 6-13 Comparisons between facilities: (a) yaw-rate and (b) -acceleration deriva-
tives.  Derivatives and model lengths are scaled values.  Symbols: , 𝑋𝑟𝑟

∗ ; , 
𝑌𝑟

∗, 𝑌𝑟𝑟𝑟
∗ , or 𝑌𝑟 

∗; and , 𝑁𝑟
∗, 𝑁𝑟𝑟𝑟

∗ , or 𝑁𝑟 
∗, respectively.  Color codes: Fr = 0.138 

(blue), 0.280 (red), and 0.410 (green), respectively.   
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6.1.4 Heave, Pitch, and Roll Motions 

Time-mean values of static drift 𝑧, 𝜃, and 𝜙 data are shown in Fig. 6-14 (a), (b), 

and (c), respectively.  From (a) and (b), 𝑧 and 𝜃 increase with 𝛽 from the values at 0 to 

positive for the former (downward sinkage) and to negative for the latter (bow-down 

trim), respectively.  From (c), 𝜙 is zero at 𝛽 = 0 and increases to positive (heel to star-

board) with 𝛽.  Data are curve fitted to quadratic or cubic functions of 𝛽 such that 

𝑧, 𝜃 = 𝐴 + 𝐵𝛽2 and 𝜙 = 𝐴𝛽 + 𝐵𝛽3, respectively, where the coefficients 𝐴‟s and 𝐵‟s are 

presented in Table 6-15.  In general, both of the polynomial coefficients 𝐴 and 𝐵 are 

functions of Fr.  From Fig. 6-14 (a) and (b), while the 𝐴 (corresponding to the values at 𝛽 

= 0) is increasing monotonically with Fr for 𝑧 and oscillating for 𝜃, respectively, more 

complete trends will be discussed later at the next Section with related to surge force 𝑋.  

The 2
nd

-order coefficient 𝐵 for 𝑧 and 𝜃 are shown in Fig. 6-14 (d) and (e), respectively, 

plotted against Fr numbers.  In the figures, Fr is scaled with the lowest number, Fr = 

0.138, and 𝐵 is scaled with its value at the Fr, which are designated as Fr
*
 and 𝐵∗, re-

spectively.  Note that 𝐵 for 𝜃 shown in Fig. 6-14 (e) is scaled with the value at Fr = 0.280 

to avoid using a near-to-zero 𝐵 value at Fr  = 0.138 for the FRz condition case.  From the 

figures, 𝐵∗ for 𝑧 is quadratic whereas that for 𝜃 is nearly linear with Fr
*
, respectively, 

indicating that  

 

Δ𝑧  Fr
2
𝛽2

  and  Δ𝜃  Fr𝛽2
       (6.6)  

where Δ𝑧 = 𝑧 − 𝐴 and Δ𝜃 = 𝜃 − 𝐴, respectively.  Similarly, 𝐴∗ and 𝐵∗ for 𝜙 are shown 

in Fig. 6-14 (f) where the 𝐴∗ increases nearly linearly for Fr
*
 < 2 and then more steeply 

with Fr
*
, whereas the 𝐵∗ is almost independent of Fr

*
, thus, approximately for small Fr 

and 𝛽,  

 

 𝜙  Fr𝛽          (6.7)  
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For 𝑧 and 𝜃, also presented in Table 6-15 are the ratio  values, defined in (6-13), 

for the polynomial coefficients for FRz condition to those for FRz condition revealing 

the effect of roll motion to heave and pitch motions.  As 𝜙 = 0 at 𝛽 = 0, the  for 𝐴‟s 

reveal no more than the errors in measurement of 𝑧 and 𝜃 at the drift angle.  For 𝑧, the  

values for 𝐵 are close to unity, indicating that the effect of roll motions on heave is small 

or that the heave motion is independent with the roll motion.  For 𝜃, in contrast,  values 

for 𝐵 are considerably larger than unity, about 4  12, revealing that the pitch and roll 

motions are rather strongly coupled each other.     

Time-histories of 𝑧, 𝜃, and 𝜙 are shown in Fig. 6-15 (b), (c), and (d), respectively, 

for pure sway (left column), pure yaw (center column), and yaw and drift (right column) 

tests at Fr = 0.280, respectively.  Shown in Fig. 6-15 (a) are the forced PMM motions; 

drift angle 𝛽 for pure sway and heading angle 𝜓 for pure yaw and yaw and drift tests, 

which are identical with those shown in Fig. 6-2 (a) for forces and moment.  The FS har-

monic amplitudes of the time-histories are evaluated as per (2) and summarized in Table 

6-16 for 𝛽𝑚𝑎𝑥  = 10 case of pure sway test, 𝑟𝑚𝑎𝑥  = 0.30 case of pure yaw test, and 𝛽 = 

10 case of yaw and drift test, respectively.  In the table, 𝐴 is the oscillation amplitude of 

𝑧, 𝜃, and 𝜙 time-histories, respectively, and 𝑧10∘, 𝜃10∘, and 𝜙10∘ represent the static drift 

𝑧, 𝜃, and 𝜙 values at 𝛽 = 10, respectively.   

For the heave 𝑧 shown in Fig. 6-16 (b), the 2
nd

-order amplitude 𝑧2 is most domi-

nant for pure sway and pure yaw, about 100% of 𝐴.  The oscillation amplitude 𝐴 is small 

compared to the static drift, about 20% and 10% of 𝑧10∘ for pure sway and pure yaw, re-

spectively.  The 0
th

-order amplitude 𝑧0, i.e. the period-mean value, is comparable with 

static drift, about 70% and 60% of 𝑧10∘ for pure sway and pure yaw, respectively.  For 

yaw and drift, both 𝐴 and 𝑧0 are larger than those for pure sway and pure yaw, about 30% 

and 110% of 𝑧10∘, respectively.  The 1
st
-order amplitude 𝑧1 is dominant for yaw and drift, 

about 95% of 𝐴, and the 2
nd

-order amplitude 𝑧2 is the second dominant, about 20% of 𝐴.  

For all test types harmonic amplitudes higher than 3
rd

-order 𝑧3,4,5,6 are small, usually less 
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than 5% of 𝐴.  Comparing the results between FRz and FRz conditions, the ratio  

values for the dominant harmonic amplitudes including 𝐴‟s are close to unity, between 

about 0.8 – 1.4, indicating that the effects of the roll motions shown in Fig. 6-16 (d) on 

the heave motions are small. 

For the pitch 𝜃 shown in Fig. 6-15 (c), the 2
nd

-order amplitude 𝜃2 is most domi-

nant for pure sway and pure yaw, similarly as for heave, about 100% of 𝐴.  Despite the 

fact for static drift test that 𝜃 for FRz condition is considerably larger than that for FRz 

as shown in Fig. 6-14 (b) (where  = 2.67 for 𝜃 at 𝛽 = 10), for pure sway test, however, 

similar values of the 0
th

-order amplitude 𝜃0 ( = 0.81) and oscillation amplitude 𝐴 ( = 

0.86) are observed from both of the conditions.  The magnitudes of those 𝜃0 and 𝐴 are 

about 80% and 40% of 𝜃10∘ for FRz condition, respectively, and about 20% and 10% for 

FRz condition, respectively.  In contrast, for pure yaw test, 𝐴 for FRz is considerably 

large than that for FRz ( = 2.14) whereas 𝜃0 is similar for both conditions ( = 0.78), 

indicating that the effect of roll motion on pitch is mainly for the oscillation amplitude 𝐴 

for pure yaw test.  The magnitudes of those 𝜃0 and 𝐴 are about 60% and 30% of 𝜃10∘ for 

FRz condition, respectively, and about 15% and 20% for FRz condition, respectively.  

For yaw and drift test, both 𝜃0 and 𝐴 for FRz is larger than those for FRz ( = 2.62 and 

2.38, respectively), which are 142% and 152% of 𝜃10∘ for the former condition, respec-

tively, and 123% and 120% for the latter condition, respectively.  The harmonic ampli-

tudes of higher than 3
rd

-order 𝜃3,4,5,6 are small for all the test types, usually less than 5% 

of 𝐴, except for 𝜃4 for pure sway and pure yaw tests, about 10%.   

For the roll 𝜙 shown in Fig. 6-15 (d), the 1
st
-order amplitude 𝜙1 is the most do-

minant, about 100% of 𝐴, for all test types.  The oscillation amplitude 𝐴 for pure sway 

test is larger than static drift 𝜙, 124% of 𝜙10∘, whereas smaller for pure yaw and yaw and 

drift tests, about 70%, respectively.  For yaw and drift test the 0
th

-order amplitude 𝜙0 is 

slightly larger than static drift 𝜙, 106% of 𝜙10∘.  Higher-order harmonic amplitudes 

𝜙2,3,4,5,6 are all small, usually less than 5% of 𝐴, for all test types, except for a few cases.   
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The 0
th

- and 2
nd

-order harmonic amplitudes of the heave motions 𝑧0 and 𝑧2 for all 

pure yaw test cases at Fr = 0.138, 0.280, and 0.410 are shown in Fig. 6-16 (a) and (b), 

respectively, with plotted against 𝑟𝑚𝑎𝑥  values.  In general, the overall appearances of 𝑧0 

data resemble the static drift 𝑧 data shown in Fig. 6-14 (a), accordingly data are curve-

fitted as 𝑧0 = 𝐴 + 𝐶𝑟𝑚𝑎𝑥
2  where the same 𝐴 values for static drift 𝑧 curve-fit correspond-

ing to each Fr case is used for the curve-fits.  𝑧2 shown in Fig. 6-16 (b) also exhibits qua-

dratic trends with 𝑟𝑚𝑎𝑥  and data are curve-fitted as 𝑧2 = 𝐷 + 𝐸𝑟𝑚𝑎𝑥
2 .  Subsequently, the 

curve-fit coefficients 𝐶 and 𝐸 are scaled with those values for Fr = 0.138 case, designated 

as 𝐶∗ and 𝐸∗, respectively, and shown in Fig. 6-16 (c) and (d), respectively, plotted 

against the Fr
*
 similarly as 𝐵∗ shown in Fig. 6-14 (d) for static drift 𝑧 data.  From Fig. 6-

16 (c), 𝐶∗ increases with Fr
*
 roughly following a cubic line, which is much faster than 

the quadratic increase of 𝐵∗.  Whereas from Fig. 6-16 (d), the 𝐸∗ follows a Fr
*2.5

 line, 

slower than 𝐶∗ yet relatively faster than 𝐵∗.  Accordingly, for those harmonic amplitudes,  

 

Δ𝑧0  Fr
3
𝑟𝑚𝑎𝑥

2   and  Δ𝑧2  Fr
2.5
𝑟𝑚𝑎𝑥

2     (6.8)  

respectively, where Δ𝑧0 = 𝑧0 − 𝐴 and Δ𝑧2 = 𝑧2 − 𝐷, respectively.  The coefficient 𝐷 

will be discussed later at next paragraph for pitch motion.  Consequently, for dynamic 

pure yaw test, the magnitudes of 𝑧0 and 𝑧2 are smaller than static drift 𝑧, respectively 

about 80% and 10% from discussions above, however increases  with Fr faster than static 

drift 𝑧. 

Similarly, the 0
th

- and 2
nd

-order harmonic amplitudes of the pitch motions 𝜃0 and 

𝜃2 for all pure yaw test cases are shown in Fig. 6-17 (a) and (b), respectively.  Data are 

curve-fitted as 𝜃0 = 𝐴 + 𝐶𝑟𝑚𝑎𝑥
2  and 𝜃2 = 𝐷 + 𝐸𝑟𝑚𝑎𝑥

2 , respectively, and the scaled coeffi-

cients 𝐶∗ and 𝐸∗ are shown in Fig. 6-17 (c) and (d), respectively, for the former coeffi-

cient similarly as 𝐵∗ for static drift 𝜃 shown in Fig. 6-14 (e) and for the latter coefficient 

similarly as 𝐸∗ for 𝑧2 discussed previously.  From Fig. 6-17 (a), the overall appearances 
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of 𝜃0 are similar to those of the static drift 𝜃 data shown in Fig. 6-14 (b), whereas the 𝜃0 

at Fr = 0.410 increases with 𝑟𝑚𝑎𝑥  in contrast to the static drift 𝜃 at the same Fr, decreas-

ing with 𝛽.  Accordingly, the 𝐶∗ shown in Fig. 6-17 (c) exhibits more complicated curve 

pattern than the simple linear pattern of static drift 𝐵∗∗ shown in Fig. 6-14 (e), rather the 

𝐸∗ shown in Fig. 6-17 (e) exhibits linear trend with Fr
*
.  Thus, for those harmonic ampli-

tudes,  

 

Δ𝜃0  𝐶(Fr)𝑟𝑚𝑎𝑥
2   and Δ𝜃2  Fr𝑟𝑚𝑎𝑥

2      (6.9)  

respectively, where Δ𝜃0 = 𝜃0 − 𝐴 and Δ𝜃2 = 𝜃2 − 𝐷, respectively, and more data may 

be necessary to determine a functional form for 𝐶(Fr).  For FRz condition, however, the 

𝜃2 values are much larger than those for FRz condition, as shown in Fig. 6-17 (b), due to 

the cross coupling between pitch and roll motions.  When 𝜙1
∗ and 𝜃2

∗ are defined similarly 

as for the scaled coefficients for the data curve-fits, both exhibit quadratic trends with Fr
*
 

as shown in Fig. 6-17 (e), thus it can be written as Δ𝜃2  Fr
2
𝑟𝑚𝑎𝑥

2  for FRz condition. 

The 2
nd

-order harmonic amplitudes 𝑧2 and 𝜃2 of heave and pitch motions are sup-

posed to become zero as the forced PMM motions are getting smaller, e.g. 𝑟𝑚𝑎𝑥   0 for 

pure yaw test.  Thus, the non-zero 𝑧2 and 𝜃2 values at 𝑟𝑚𝑎𝑥  = 0.05 shown in Fig. 6-16 (b) 

and Fig. 6-17 (b), respectively, (accordingly non-zero 𝐷‟s for the curve-fits) are out of 

expectation.   
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Table 6-15 Polynomial Fit Coefficients for Static Drift Motions Data.  

Coeff. Fr 
 𝑧  102  𝜃 ()  𝜙 () 

 FRz FRz   FRz FRz   FRz 

𝐴 0.138  0.006 -0.017 -2.83  -0.039 -0.004 0.10  0.056 

 0.280  0.176   0.217 1.23  -0.097 -0.026 0.27  0.119 
 0.410  0.434   0.516 1.19    0.396   0.453 1.14  0.239 

𝐵 103 0.138  0.284   0.291 1.02  -0.153  -1.759 11.50  0.096 

 0.280  0.983   0.810 0.82  -1.326  -6.875 5.18  0.139 
 0.410  2.692   2.428 0.90  -2.769 -10.609 3.83  0.115 

 

 

 

 

Table 6-16  Harmonic Amplitudes
1)

 of Motions for Dynamic Tests (Fr = 0.280).  

Var. 
Harmonic 

amplitude 

Pure Sway (𝛽𝑚𝑎𝑥  = 10)  Pure Yaw (𝑟𝑚𝑎𝑥  = 0.30)  Yaw and Drift (𝛽 = 10) 

FRz FRz   FRz FRz   FRz FRz  

𝑧 𝑧0 0.67 0.81 1.16  0.54 0.76 1.37  1.12 1.12 0.96 

 𝐴 0.24 0.19 0.76  0.09 0.08 0.80  0.32 0.27 0.83 

 𝑧1 - - -  - - -  0.95 0.94 0.82 

 𝑧2 1.01 0.99 0.75  0.98 1.00 0.82  0.21 0.21 0.82 

 𝑧3 - - -  - - -  0.01 0.02 1.40 

 𝑧4 0.05 0.04 0.74  0.12 0.12 0.79  0.00 0.03 6.00 

 𝑧5 - - -  - - -  0.00 0.02 7.00 

 𝑧6 0.03 0.03 0.65  0.06 0.07 1.00  0.02 0.01 0.50 

𝜃 𝜃0 0.77 0.21 0.81  0.60 0.15 0.78  1.42 1.23 2.62 

 𝐴 -0.42 -0.12 0.86  -0.30 -0.22 2.14  -1.52 -1.20 2.38 

 𝜃1 - - -  - - -  0.97 0.99 2.44 

 𝜃2 0.99 1.03 0.89  0.99 1.01 2.19  0.12 0.14 2.90 

 𝜃3 - - -  - - -  0.02 0.01 1.62 

 𝜃4 0.09 0.10 1.02  0.13 0.05 0.78  0.00 0.01 4.30 

 𝜃5 - - -  - - -  0.00 0.01 6.06 

 𝜃6 0.01 0.02 2.48  0.04 0.02 1.14  0.00 0.01 6.87 

𝜙 𝜙0 - - -  - - -  - 1.06 - 

 𝐴 - 1.24 -  - 0.71 -  - 0.67 - 

 𝜙1 - 1.00 -  - 1.01 -  - 1.03 - 

 𝜙2 - - -  - - -  - 0.02 - 

 𝜙3 - 0.09 -  - 0.01 -  - 0.04 - 

 𝜙4 - - -  - - -  - 0.01 - 

 𝜙5 - 0.06 -  - 0.01 -  - 0.01 - 

 𝜙6 - - -  - - -  - 0.01 - 

1) Those values presented herein are 𝜒0 (𝜒 = 𝑧, 𝜃, 𝜙) and 𝐴 in % of 𝜒10∘ and 𝜒𝑛  (𝑛 = 1, 2, …, 6) in % of 𝐴, respectively, where 

𝜒10∘ represents the static drift 𝜒 value at 𝛽 = 10. 
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

 

Figure 6-14 Motions data for static drift tests (Corrected for symmetry): (a) 𝑧, (b) 𝜃, and 
(c) 𝜙, and the polynomial-fit coefficients (scaled): (d) 𝐵∗ for 𝑧, (e) 𝐵∗ for 𝜃, 
and (f) 𝐴∗ and 𝐵∗ for 𝜙, respectively.  Symbols for (a), (b), and (c): , 𝐹𝑟 = 
0.138; , 𝐹𝑟 = 0.280; , 𝐹𝑟 = 0.410; , 𝐴∗; , 𝐵∗.   Color codes: , FRz and 
, FRz.  
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 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

Figure 6-15 Time-histories of motions data (Corrected for symmetry) for pure sway test 
(left column), pure yaw test (center column), and yaw and drift test (right col-
umn) at Fr = 0.280, resepctively: (a) input motions 𝛽 or 𝜓, and responses in 
(b) 𝑧, (b) 𝜃, and (c) 𝜙.  Color codes: , FRz and , FRz. 
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(a) 

 

(c) 

 

(b) 

 

(d) 

 

Figure 6-16 Pure yaw heave 0
th

- and 2
nd

-order harmonic amplitudes: (a) 𝑧0 and (b) 𝑧2, 
and scaled curve-fit coefficients: (c) 𝐶∗ and (d) 𝐸∗. Simbols for (a) and (b):  
𝐹𝑟 = 0.138,  𝐹𝑟 = 0.280,  𝐹𝑟 = 0.410.  Color code: , FRz and , FRz.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

  

Figure 6-17 Pure yaw pitch 0
th

- and 2
nd

-order harmonic amplitudes: (a) 𝜃0 and (b) 𝜃2, and 
scaled curve-fit coefficients: (c) 𝐶∗ and (d) 𝐸∗, and (e) scaled 1

st
-order roll and 

2
nd

-order pitch harmonic amplitudes, 𝜙1
∗ and 𝜃2

∗.  Simbols for (a) and (b):  𝐹𝑟 
= 0.138,  𝐹𝑟 = 0.280,  𝐹𝑟 = 0.410.  Color codes: , FRz and , FRz. 
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6.1.5 The Effects of Motions and Mount Conditions 

Forces and moment and subsequent hydrodynamic derivatives are compared be-

tween four mount-conditions, FX0, FX, FRz, and FRz (Sections 3.3 and 3.4), and the 

effect of heave, pitch, and roll motions on those variables are discussed.  For the compar-

isons the ratios of data , z, and z are defined as 

 

 ,z,z  
𝑥𝜍𝜏 ,𝑧𝜃 ,𝑧𝜃𝜙

𝑥0
        (6.10)  

where 𝑥𝜍𝜏 , 𝑥𝑧𝜃 , 𝑥𝑧𝜃𝜙 , and 𝑥0 can be any quantity from the FX, FRz, FRz, and FX0 

conditions, respectively.  As all motions are restrained for FX0 condition (except for the 

forced PMM motions), the ratios , z, and z signify the effect of sinkage and trim, 

heave and pitch motions, and heave, pitch, and roll motions, respectively, on the variable 

𝑥 of interest.  Note that  defined in (6-13) is equivalent to z/z such that  = 

z/z, which emphasizes the effect of roll motion.  The ratios values for some select 

cases are presented for static drift 𝑋, 𝑌, and 𝑁 in Table 35 and for the dominant harmonic 

amplitude and phase of dynamic tests in Table 36, respectively. 

Static drift 𝑋, 𝑌, and 𝑁 data for all mount conditions are shown in Fig. 6-18.  In 

general, data are close between the FX and FX0 conditions and as well between the 

FRz and FRz conditions, whereas considerably different between the FRz and FX0 

conditions.  Between FX and FX0, at Fr = 0.280 (middle column) in Fig. 6-18,  = 

1.05 in average for 𝑋, 𝑌, and 𝑁 at  = 10 indicating that the forces and moment in-

creased about 5% due to sinkage and trim ( = 0.19210
-2

 L and  = -0.136; fixed) from 

those for FX0 condition ( =  = 0; fixed).  When the model is released free in heave and 

pitch for FRz condition (z = 0.28810
-2

 L and  = -0.212 at  = 10; z/ = 1.5 and / = 

1.6), then the increase in forces and moment from FX0 becomes considerably larger, 

where z = 1.14 in average at  = 10.  As  increased to 20, the increase in forces and 

moment as well grows with  for FRz condition (z = 1.28 in average), whereas remains 
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almost constant with  for FX condition ( = 1.05 in average), respectively.  The 

forces and moment increase even larger at Fr = 0.410 for FRz condition, shown at the 

right column of Fig. 6-18, where z = 1.28 in average at  = 10.  On the other hand, for 

FRz condition, forces and moment data are not different from those for FRz with z 

values close to z for all cases, i.e.   1.0, indicating that the effect of roll motion ( = 

0.7, 1.3, and 2.5 at  = 10 for Fr = 0.138, 0.280, and 0.410, respectively) on the 

forces and moment is almost negligible.   

For the FRz condition, the increase of forces and moment from FX0, say Δ𝑥 for 𝑥 

= 𝑋, 𝑌, or 𝑁, can be written as 

 

 Δ𝑥 = 𝑥𝑧𝜃 − 𝑥0 = 𝑥0 zθ
− 1        (6.11)  

where 𝑥𝑧𝜃  and 𝑥0 are the 𝑥 of FRz and FX0 conditions, respectively.  Shown in Fig. 6-19 

are (a) the Δ𝑥 for 𝑋, 𝑌, and 𝑁 of Fr = 0.280 case over 0 <  < 20 range and (b) those at 

 = 10 of Fr = 0.138, 0.28, and 0.410 cases, respectively.  In the figures, the 𝛽 values 

and Fr numbers at the abscissa are scaled with 10 and 0.138, respectively, denoted as 𝛽∗ 

and Fr
*
, respectively, and the Δ𝑥 values at the ordinate are scaled with its value at 𝛽 =10 

and at Fr = 0.138, respectively, denoted as Δ𝑥∗.  Consequently, the results indicate that 

Δ𝑥 is proportional to 𝛽∗2
 and Fr

*1.5
 such as  

 

 Δ𝑥  Fr
1.5
𝛽2

 + f(Fr)        (6.12)  

where f(Fr) is for 𝛽 = 0 and f = 0 for 𝑌 and 𝑁.  Recalling (6.6) in Section 6.1.4 that Δ𝑧  

Fr
2
𝛽2

 and Δ𝜃  Fr𝛽2
 for static drift heave and pitch at 𝛽 > 0, the rate of increase in 

forces and moment Δ𝑥 is similar as heave and pitch with 𝛽 whereas relatively slow with 

Fr, respectively.  In that, however, pitch motion is strongly coupled with roll motion as 

discussed in Section 6.1.4 (with  > 4 for 𝜃) whereas Δ𝑥 is almost independent of roll 
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with   1.0 as discussed above, it is considered that Δ𝑥 for 𝛽 > 0 is mainly attributed to 

the heave motion.  

On the other hand, from (6.12), Δ𝑥  f(Fr) at 𝛽 = 0 for 𝑋.  As 𝛽 = 0 corresponds 

to the steady, straight towing condition, the 𝑋, 𝑧, and 𝜃 values at 𝛽 = 0 shown in Fig. 6-1 

(a), Fig. 6-14 (a), and Fig. 6-14 (b), respectively, are converted into the total resistance 

𝐶𝑇 , sinkage 𝜍, and trim 𝜏 of the model, respectively14.  The 𝐶𝑇15𝐶
, 𝜍, and 𝜏 data are pre-

sented in Fig. 6-20 showing good agreements with Longo et al. (2005)15 where the au-

thors used the same DTMB 5512 model as the present study and measured 𝐶𝑇15𝐶
, 𝜍, and 

𝜏 over a range of Fr = 0.05 - 0.45.  The Results of Longo et al. reveals more clearly the 

Fr trends of 𝐶𝑇15𝐶
, 𝜍, and 𝜏, i.e. 𝑋, 𝑧, and 𝜃 at 𝛽 = 0; 𝐶𝑇15𝐶  first decreases for Fr  < 0.25, 

oscillates small at 0.25 < Fr < 0.35, and sharply increases for Fr > 0.35; 𝜍 increases ra-

ther monotonically; 𝜏 increases first to negative (bow-down), then oscillates, and sharply 

increases to positive (bow-up), respectively.  Noticing similar Fr trends between the data, 

𝐶𝑇15𝐶  data were curve-fitted with 𝜍 and 𝜏 data using a regression equation16 𝑦 𝜍, 𝜏 =

                                                 

14 Those are defined as:  

 𝐶𝑇 = −𝐹𝑥 0.5𝜌𝑈𝐶
2𝑆 ; 𝜍 =  Δ𝐹𝑃 + Δ𝐴𝑃 2𝐿 ; 𝜏 =  Δ𝐴𝑃 − Δ𝐹𝑃 𝐿  

respectively, where 𝑆 is the wetted-surface area of the model and Δ𝐹𝑃 and Δ𝐴𝑃 are the model 

displacements at the forward- (𝐹𝑃) and aft-perpendiculars (𝐴𝑃), respectively, related to 𝑧 and 𝜃 

as:  

 Δ𝐹𝑃 = 𝑧 − 1
2
𝐿 sin𝜃 and Δ𝐴𝑃 = 𝑧 + 1

2
𝐿 sin𝜃 

respectively.  Typically, 𝐶𝑇 is converted into 𝐶𝑇15𝐶
 with all data calibrated to a standard water 

temperate 15C, which allows direct comparisons of the 𝐶𝑇 values between tests at different Rey-

nolds number (Re) conditions. 

15 Those data presented in Longo et al. (2005) were found to be erroneous as confirmed with the 

authors by personal communications.  The 𝐶𝑇15𝐶 in Fig. 3 and 𝜍 and 𝜏 data in Fig. 4 of Longo et 

al. (2005) were found to be 𝐶𝑇, 4𝜍, and 2𝜏, respectively, accordingly those data were corrected 

for Fig. 21 of the present study. 

16 Also tested were three other regression equations: 𝑦 = 𝑎 + 𝑏𝜍; 𝑦 = 𝑎 + 𝑐𝜏; 𝑦 = 𝑎 + 𝑏𝜍 + 𝑐𝜏.  

The resulting correlation coefficients were r = 0.80, 0.93, and 0.96, respectively. 



 

 

205 

2
0
5
 

𝑎 + 𝑏𝜍 + 𝑐𝜏 + 𝑑𝜍𝜏.  The result shown in Fig. 6-20 (a) demonstrates a good agreement 

between 𝐶𝑇15  and 𝑦 𝜍, 𝜏  with a correlation coefficient r = 0.99, indicating that 𝐶𝑇15𝐶 , 

i.e. 𝑋 for static drift, is strongly correlated with 𝜍 and 𝜏, i.e. heave and pitch, such that 𝑋 

 f(, ; Fr) at 𝛽 = 0.   

Dynamic test results are shown Fig. 6-21 for pure sway at 𝛽𝑚𝑎𝑥  = 10 (left col-

umn), pure yaw at 𝑟𝑚𝑎𝑥  = 0.3 (middle column), and yaw and drift at 𝛽 = 10 (right col-

umn) cases, respectively.  Overall trends are similar as for static drift; for dominant har-

monic amplitudes such as the 0
th

-order amplitude 𝑋0 and the 1
st
-order amplitudes 𝑌1 and 

𝑁1, data are close between the FX and FX0 conditions and between the FRz and FRz 

conditions, but different between the FRz and FX0 conditions.  Between the FX and 

FX0 conditions, for pure sway and pure yaw tests, data are fairly close each other with  

= 0.9  1.0 for 𝑋0 and  = 1.0  1.1 for 𝑌1 and 𝑁1.  For FRz condition, compared to FX0 

condtion, the dominant harmonic amplitudes are fairly larger for pure sway data with z 

= 1.1  1.3, and moderately larger for pure yaw data with z = 1.0  1.1 and for yaw and 

drift data with z = 1.1  1.2, respectively.  For yaw and drift data, however, the 1
st
-order 

amplitude 𝑋1 of FRz is significantly larger than FX0 with z = 3.7.  Those data for FRz 

condition are close to FRz in general with similar values of z for the dominant harmon-

ic amplitudes and thus   1.0 indicating the effect of roll motions on those dominant 

harmonics data is small or nearly negligible.  In contrast, the 1
st
-order phases 𝜑𝑌1 and 

𝜑𝑁1 are close between all mount conditions for all test types, with , z, z  1.0, im-

plying that the ratios between the added-mass and the damping forces, as shown in (3) 

and (4), remains almost constant despite the changes in the harmonic amplitudes 𝑌1 and 

𝑁1 between mount conditions.  Nonetheless, no clear trend of those data such as (12) for 

static drift data, is observed from the dominant harmonics data with the PMM motion pa-

rameters such as 𝛽𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , or 𝛽, or with Fr.  
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Hydrodynamic derivatives are compared between the mount conditions in Table 

6-19 for sway, yaw, and cross-coupled derivatives.  For the sway derivatives, sway veloc-

ity derivatives 𝑌𝑣, 𝑁𝑣, 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣  and 𝑁𝑣𝑣𝑣  are by using the static drift data and the sway 

acceleration derivatives 𝑌𝑣  and 𝑁𝑣  are using the MRL method (Section 2.3.5) for the pure 

sway test data, respectively.  The yaw derivatives 𝑌𝑟 , 𝑁𝑟 , 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , 𝑁𝑟𝑟𝑟 , 𝑌𝑟 , 𝑁𝑟  and the 

cross-coupled derivatives 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑣𝑟𝑟 , 𝑁𝑟𝑣𝑣  are as well using the MRL method 

for the pure yaw and yaw and drift tests data, respectively.  Note that those derivatives for 

FRz condition are using the SRL method (Section 2.3.5) due to the limited number of 

test case, except for the sway velocity derivatives.  As FRz is the most common mount 

condition for PMM tests, of interest herein are the ratios 0, , and  of those deriva-

tives for FX0, FX, and FRz condition, respectively, to for FRz condition defined as 

 

 0,,  
𝑥0,𝜍𝜏 ,𝑧𝜃𝜙

𝑥𝑧𝜃
        (6.13)  

where 𝑥0, 𝑥𝜍𝜏 , 𝑥𝑧𝜃𝜙 , and 𝑥𝑧𝜃  can be any quantity from the FX0, FX, FRz, and FRz 

conditions, respectively.  For sway derivatives, linear derivatives 𝑌𝑣 and 𝑁𝑣 values of FX0 

condition are slight smaller than FRz about 10% with 0 = 0.9 in average, while those of 

FX condition are close to FRz with   1.0, respectively.  The non-linear derivatives 

𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , and 𝑁𝑣𝑣𝑣  of both FX0 and FX conditions, however, are considerably smaller 

than FRz with 0,   0.6, and the sway acceleration derivatives 𝑌𝑣  and 𝑁𝑣  are as well 

smaller, with 0,   0.8 for the former derivative and 0,   0.6 for the latter, respec-

tively.  On the other hand, for FRz condition, all the sway derivative values are close to 

FRz with   1.0 except for a few cases.  For yaw derivatives, linear derivatives 𝑌𝑟  and 

𝑁𝑟  of all mount conditions are close to FRz typically with 0, ,  = 0.9  1.2, whe-

reas the non-linear derivatives 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , 𝑁𝑟𝑟𝑟  are usually smaller than FRz for FX0 and 

FX conditions with  0,  = 0.5  0.7 in general.  Those non-linear derivatives of 

FRz condition, however, are rather scattering both magnitude and sign of the derivatives 
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as those are determined using the „Single-Run‟ method usually unreliable determining 

non-linear derivatives as discussed previously in Section 6.1.2.  The yaw acceleration de-

rivative 𝑌𝑟  values also scatter between the mount conditions with 0, ,  = 0.5  1.3 

but without consistency between cases, while 𝑁𝑟  values for FX0 and FX conditions are 

smaller than FRz with 0,   0.8 and for FRz condition larger with  = 1.1  1.2, 

respectively.  The comparisons results for the cross-coupled derivatives 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , 

𝑁𝑣𝑟𝑟 , and 𝑁𝑟𝑣𝑣  are similar with for 𝑁𝑟  but with larger ratio values; 0  0.3 for FX0 condi-

tion (except for 𝑌𝑣𝑟𝑟  and 𝑌𝑟𝑣𝑣  for which 0 = 1.0 and 0.8, respectively) and  = 1.1  1.3 

for FRz condition, respectively.   

Consequently, by imposing a fixed amount of singkage and trim or by allowing 

the model to move freely in heave, pitch, or roll, the forces and moment increased up to 

about 10% and up to about 30% within the range of test conditions, respectively, from a 

condition where the model is completely restrained in all motions.  For static drift test, 

the increase in forces and moment was mainly attributed to the heave motion for 𝛽 > 0, 

whereas at 𝛽 = 0, 𝑋 force was correlated with both heave (sinkage) and pitch (trim) mo-

tions.  Typically, the effect of roll motion was small or negligible for both static and dy-

namic forces and moment, possibly due to the small magnitudes of the roll motions.   De-

spite the differences in forces and moment due to the heave and pitch motions, usually 

the linear hydrodynamic derivatives were close between the mount conditions, within a 

range of 90%  110% range, whereas the non-linear derivative values were smaller for 

the fixed-model conditions typically more or less than 40%  70% compared to the free-

model conditions.  The effect of roll motions was as well small or negligible for the hy-

drodynamic derivatives. 
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Table 6-17  Comparisons between mount-conditions (Static drift).  

𝛽 Var. 
Fr = 0.138  Fr = 0.280  Fr = 0.410 

z z    z z   z z  

0 𝑋 1.05 1.04 0.98  1.03 1.07 1.10 1.03  1.26 1.30 1.03 

10 𝑋 1.08 1.07 0.99  1.03 1.14 1.14 1.00  1.32 1.37 1.03 

 𝑌 1.08 1.06 0.99  1.05 1.11 1.12 1.00  1.25 1.29 1.03 

 𝑁 1.10 1.09 0.99  1.07 1.17 1.18 1.00  1.29 1.29 1.00 

20 𝑋 1.16 1.15 0.99  1.03 1.26 1.21 0.96  - - - 

 𝑌 1.06 1.07 1.01  1.06 1.24 1.21 0.98  - - - 

 𝑁 1.09 1.11 1.01  1.07 1.33 1.26 0.95  - - - 

 

 

 

 

 

 

Table 6-18  Comparisons between mount-conditions (Dynamic tests at Fr = 0.280).  

Var. Har. 
Pure Sway (𝛽𝑚𝑎𝑥  = 10)  Pure Yaw (𝑟𝑚𝑎𝑥  = 0.30)  Yaw and Drift (𝛽 = 10) 

 z z    z z   z z  

𝑋 𝑋0 0.98 1.34 1.17 0.87  0.94 1.10 1.09 0.99  1.14 1.12 0.99 

 𝑋1 - - - -  - - - -  3.74 4.05 1.08 

𝑌 𝑌0 - -  -  - -  -  1.13 1.12 0.99 

 𝑌1 1.08 1.12 1.13 1.01  1.00 1.00 0.99 0.99  1.13 1.09 0.97 

 𝜑𝑌1 1.00 1.03 1.03 1.00  1.03 0.98 0.98 1.00  0.98 1.00 1.02 

𝑁 𝑁0 - -  -  - -  -  1.22 1.22 1.00 

 𝑁1 1.09 1.21 1.21 1.00  1.10 1.13 1.13 1.00  1.25 1.21 0.97 

 𝜑𝑁1 1.00 1.03 1.02 1.00  1.01 1.00 1.00 1.00  1.00 1.00 1.00 
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Table 6-19  Comparisons between mount-conditions (Hydrodynamic derivatives).  

Derivative Fr 0   

𝑌𝑣 0.138 0.92 - 0.97 

 0.280 0.96 1.00 1.02 

 0.410 0.89 - 1.07 

𝑁𝑣 0.138 0.90 - 0.97 

 0.280 0.90 0.97 1.03 

 0.410 0.86 - 1.05 

𝑋𝑣𝑣  0.138 0.40 - 1.02 

 0.280 0.65 0.67 0.89 
 0.410 0.54 - 1.03 

𝑌𝑣𝑣𝑣  0.138 0.98 - 1.07 

 0.280 0.62 0.67 0.92 

 0.410 0.56 - 0.91 

𝑁𝑣𝑣𝑣  0.138 0.95 - 1.14 

 0.280 0.27 0.27 0.69 
 0.410 0.41 - 0.78 

𝑌𝑣  0.280 0.81 0.87 1.02 

𝑁𝑣   0.55 0.57 0.95 

𝑌𝑟  0.138 1.05 - 0.65 

 0.280 0.98 1.08 0.86 
 0.410 1.18 - 1.19 

𝑁𝑟  0.138 0.98 - 0.95 

 0.280 1.12 0.99 0.98 

 0.410 0.91 - 1.17 

𝑋𝑟𝑟  0.138 -0.55 - -0.14 

 0.280 0.71 1.02 -0.31 
 0.410 0.57 - 0.02 

𝑌𝑟𝑟𝑟  0.138 1.43 - 2.54 

 0.280 0.47 0.47 3.56 

 0.410 0.68 - -0.36 

𝑁𝑟𝑟𝑟  0.138 1.00 - 1.53 

 0.280 0.44 0.72 1.06 

 0.410 0.55 - 0.06 

𝑌𝑟  0.138 0.73 - 1.12 

 0.280 1.29 0.46 0.71 

 0.410 0.98 - 0.95 

𝑁𝑟  0.138 0.89 - 1.18 

 0.280 -0.59 0.80 1.16 

 0.410 0.81 - 1.06 

𝑋𝑣𝑟  0.280 0.28 - 1.17 

𝑌𝑣𝑟𝑟   1.03 - 1.26 

𝑌𝑟𝑣𝑣   0.84 - 0.93 

𝑁𝑣𝑟𝑟   0.30 - 1.27 

𝑁𝑟𝑣𝑣   0.21 - 0.98 
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 𝐹𝑟 = 0.138 𝐹𝑟 = 0.280 𝐹𝑟 = 0.410 

(a) 

   

(b) 

   

(c) 

   

Figure 6-18 Comparisons between mount-conditions – Static drift data (Corrected for 
symmetry) at Fr=0.138 (left), 0.280 (center), and 0.410 (right): (a) 𝑋, (b) 𝑌, 
and (c) 𝑁.  Symbols (colors): , FX0; , FXz; dash-line, FRz; and , FRz. 
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(a) (b) 

  

Figure 6-19 Comparisons of static drift 𝑋, 𝑌, and 𝑁 data between the FRz and FX0 
mount conditions: (a) x vs.  at Fr = 0.280 and (b) x vs. Fr at  = 10, 
where the x values are scaled with those at  = 10 and with those at Fr = 
0.138, respectively.  

(a) (b) 

  

Figure 6-20 Comparisons of the static drift 𝑋, 𝑧, and 𝜃 data at 𝛽 = 0 with the resistance 
test (Longo et al. 2005): (a) 𝐶𝑇15𝐶  and (b) 𝜍 and 𝜏.  


*

10


x*

0 0.5 1 1.5 2 2.5
0

2

4

6

8

X

Y

N

y = 
*2

y = 0.5(
*2

+1)

Fr
*

0.138


x*

0 1 2 3 4
0

2

4

6

8

10
X

Y

N

y = Fr
*1.5

Fr

C
T

1
5

C


1
0

3

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

Longo et al.(2005)

1957 ITTC correlation line

Static drift at  = 0, FR
z

y=A+B+C+D

Fr

(
,
)


1
0

2

0.1 0.2 0.3 0.4 0.5

-1

0

1

2
, Longo et al. (2005)

, Longo et al. (2005)

, static drift at  = 0, FR
z

, static drift at  = 0, FR
z



 

 

212 

2
1
2
 

 Pure sway Pure yaw Yaw and drift 

(a) 

   

(b) 

   

(c) 

   

Figure 6-21 Comparisons between mount-conditions – Pure sway (left, 𝛽𝑚𝑎𝑥  = 10 case), 
pure yaw (center, 𝑟𝑚𝑎𝑥  = 0.30 case), and yaw and drift (right, 𝛽 = 10 case) 
tests at Fr = 0.280 (Corrected for symmetry): (a) 𝑋, (b) 𝑌, (c) 𝑁, (d) 𝑧, (e) 𝜃, 
and (f) 𝜙.  Symbols (colors): , FX0; , FXz; , FRz; and , FRz.  
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6.2 Stereo-PIV measured flow fields 

6.2.1 Pure sway flow field 

The trajectory of model and overviews of flow around the model in pure sway 

motion are shown in Fig. 6-22.  At the top of the figure model trajectory, i.e. the path line 

of model mid-ship point, is shown with a dashed line.  The trajectory or the path line for 

pure sway motion is a combination of a constant towing carriage speed UC and a cyclic 

sway motion y = -y0 sint, where the amplitude y0 = 0.104 L and the frequency  = 

1.672 UC/L (period T = 2π/ = 3.748 L/UC) and 𝐿 = 3.048 m is the model length and UC 

= 1.531 m/s.  In physical units, the sway frequency f = 0.134 Hz and the sway period T = 

f
 -1

 = 7.463 sec.  In the figure, the outlines of the model water-plane are shown at every 

45 phases of the pure sway motion,  = t = 0, 45, 90, 135, 180, 225, 270, 315, 

and 360, with numbered 1 through 9, respectively.   For the first half of the cycle, model 

moves with its maximum negative (toward portside) sway velocity v = -y0 = -0.174 at 

(1)  = 0 and decelerates through (2)  = 45 to (3)  = 90 where v = 0, and then changes 

its sway direction (toward starboard) and accelerates through (4)  = 135 to (5)  = 180.  

For the second half of the cycle, 5, 6, 7, and 8 are anti-symmetric with the 1, 2, 3, and 4, 

respectively, and 9 is identical with 1.   

Below the model trajectory in Fig. 6-22, shown are the overviews of the SPIV 

measured flow field around the model at each of those phase positions.  As well shown is 

the model path line (the curved lines with colored in light blue through the model) to em-

phasize the movement of model.  As the model moving along the path line, accordingly 

the direction of incoming flow changes with the phase angle continuously, e.g. 10, 7, 

0, and -7 at  = 0, 45, 90, and 135, respectively, (shown as blue arrows below at the 

model sonar dome in Fig. 6-1) with respect to the model center line, and in the opposite 

directions at the second half of the sway cycle.  The flow field data presented in the fig-

ures are the contours of axial velocity U (≤ 0.95) and the cross flow streamlines, respec-
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tively at four longitudinal locations, x = 0.135, 0.235, 0.735, and 0.935.  Note that the 

streamlines are relative to model movements, i.e., seen from onboard.  The overall flow 

pattern is with growing boundary layers in the longitudinal direction (thin at the fore 

body and thick at the aft body), and is mainly lateral flow in the cross planes where sev-

eral apparent vortices are seen clearly, in general at the leeward side of the cross flow.  

6.2.1.1 Vortical structure of the flow 

More complete vortical structure of the flow can be seen from CFD simulations 

such as Sakamoto (2009) where the flows around DTMB 5512 geometry in steady and 

dynamic PMM motions are simulated.  Simulation results for steady PMM motions are 

shown in Fig. 6-23, presenting the vortical flow structures for (a) straight-ahead and (b) 

static drift with drift angle  = 10 cases.  Sakamoto (2009) visualized the vortical flow 

structures by using the Q-criterion (Hunt et al., 1988) along with the relative helicity val-

ues; positive values for counterclockwise rotation (red colored) when viewed from be-

hind a body and negative values for clockwise rotation (blue colored).  For the straight-

ahead case, i.e.  = 0, the vortical structure is symmetry about hull center plane and with 

vortices in pairs of counter-rotating vortices.  At the fore body sonar dome vortex (SD) 

and fore body keel vortex (FK) are generated behind the sonar dome and along the keel 

line, respectively.  At the aft body, bilge keel vortex (BK), aft body keel vortex (AK), and 

transom vortex (T) are seen behind the bilge keels, neat at the aft body keel, and after the 

transom, respectively, however those vortices persist locally and are small in size in gen-

eral.  Note that the subscripts of the labels in the figure such as P, S, and C represent the 

portside, starboard, and center keel of the hull, respectively, where the vortices are gener-

ated.  For  = 10, the vortical structure is asymmetric about the hull center plane and 

vortices becomes considerably larger and global compared to the straight-ahead case. 

The vortical flow structures for pure sway are shown in Fig. 6-24 (a) and (b), with 

vortices visualized from the CFD simulations by Sakamoto (2009) and from the vorticity 
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field measured by SPIV, respectively.  In the figures vortical structures are shown at four 

sequential sway phase positions,  = 0, 45, 90, and 135, in a column, so that the tra-

jectory of the hull and the dynamic features of the vortical structures are envisioned.  For 

CFD in (a), the vortical structures are in general similar with those for static drift with  = 

10 case shown in Fig. 6-23 (b), whereas the size, location, and the sign (direction of vor-

tex rotation) of the vortices may change along the sway motion.  For SPIV in (b), vortices 

are visualized with the vorticity x contours with colored in red for x ≥ 20 and in blue 

for x ≤ -20 representing the counter-clockwise and clockwise rotations seen from behind 

the model in accordance with the helicity color coding for CFD.  The x contours are 

compared with the helicity iso-surfaces of CFD and corresponding vortices are identified 

with labeled in the figure.  From CFD, SDS vortex is first short and away from the hull at 

 = 0 and stretching in length and approaching toward the hull at  = 45 and thinning 

and straightened and close to the center plane at  = 90 and then detaches from the sonar 

dome and begins a counter rotating SDP vortex at  = 135.  Sakamoto (2009) reported 

that the angle between the SDS and the hull center plane SDs1 15 at non-dimensional 

time t/T  0.14 or at   50.  BKP vortex at the portside, the second largest one, exhibits 

similar trend as SD; stretching and straightening, thinning, and then begins a counter ro-

tating vortex.  From SPIV, SD is not captured well at the stern side for  = 0 and 45, 

maybe its location is out of the SPIV measurement area.  At the fore body and for  = 90 

and 135, however, SD vortices can be seen clearly from the SPIV and seemingly in good 

agreement with CFD in terms of their size, location, and sign.  FK vortices are not de-

tected from SPIV or hard to be seen due to the lack of spatial resolution of SPIV mea-

surement in the longitudinal direction, only two locations, x = 0.135 and 0.235, at the fore 

body where the FK vortices are from CFD.  Whereas both BKP and BKS clearly seen 

from SPIV and in general exhibit qualitatively good agreements with CFD for their size, 

location, and direction of rotation, from a visual inspection.  For other vortices, AKC vor-

tex near at the center of x = 0.935 plane in general matches well between CFD and SPIV, 
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whereas FS vortices are not clear from SPIV due to its limited amount of data and rela-

tively larger uncertainty in measurements near at the free surface.  The transom vortex T 

of CFD is out of SPIV measurement scope.   

6.2.1.2 Phase-averaged velocity field 

Phase-averaged mean axial velocity U is shown in Fig. 6-25 for the four longitu-

dinal locations, x = 0.135, 0.235, 0.735, and 0.935 (from top to bottom), and for the four 

pure sway phase positions, = 0, 45, 90, and 135 (from left to right), where the SPIV 

measurements were made.  The flows at the later phase positions,  = 180, 225, 270, 

and 315, are the horizontally mirrored images of those, respectively.  In the figures, con-

tours (with flooded) are presented for U ≤ 0.95 and those for U > 0.95 are blanked out 

and not shown, to emphasize the parts where the flow is retarded from the incoming free 

stream (or the boundary layers) only.  As well shown are the cross-sections of the model 

(the light gray part) cut at the four longitudinal x locations and the front part of the model 

from the cut positions with projected into the paper (the darker gray part) to highlight the 

details of the model hull form such as the locations of the sonar dome and the bilge keels.  

The flow is seen from behind the model, looking upstream, thus, the longitudinal direc-

tion of the incoming flow is out of paper from the figures.  The transverse direction of the 

incoming flow is from the portside to starboard (left to right in the figure) with respect to 

the model for the first two phases,  = 0 and 45, and with no transversal flow at 90 and 

in reverse (right to left in the figure) for 135.  The incoming flow directions at the sever-

al sway phase positions are depicted in Fig. 6-1, together with the path lines of the model 

in the pure sway motion. 

From Fig. 6-25, the mean axial velocity contours at x = 0.135 reveal very thin 

boundary layers near around the hull, and under the keel a retarded flow region that is in 

the SD vortex and in the wake of the sonar dome.  At x = 0.235, the retarded flow region 

becomes smaller in size and is confined at near beneath the keel, may be the flow is out 
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of the sonar dome wake and recovers its momentum.  At x = 0.735, the boundary layer 

thickens at the girth-wise middle of the bilges at portside and starboard, (y, z) = (-0.04, -

0.03) and (0.04, -0.03), respectively, thicker at leeward side, and apparently interacting 

with the BK vortices.  At x = 0.935, the boundary layer thickens considerably, and a large 

size dead-flow zone where U < 0.5 appears at  = 90, underneath the aft body keel, near 

around (y, z) = (0, -0.1).   

The shape and size of the boundary layers typically changes along with the model 

sway motion, possibly interacting with nearby vortices; mainly with the SD vortex at x = 

0.135 and 0.235, with the BK and SD vortices at x = 0.735, and with the BK, AK, and SD 

vortices at x = 0.935.  The shape of boundary layers at  = 0, 45, and 135, as expected, 

is asymmetry with respect to the hull center plane (i.e., y = 0) due to the transverse flow 

caused by the model sway motion, whereas it is notable that the boundary layer is as well 

asymmetry, particularly at the aft body, even at  = 90 where the incoming free stream 

flow is zero in transverse direction such that the incoming free stream flow is tangential 

to the model path line, i.e. straight ahead condition.  This is due to the dynamic motions 

of the model such that while the vortices around the model are changing their size, spatial 

location relative to the model, and the direction of rotation, dynamically, as shown in Fig. 

6-24, those changes may not in-phase with the model sway motions.  The phase differ-

ence between the vortices and the model motion will be discussed later together with the 

vorticity field. 

In Figs. 6-26 and 6-27, the average U≤0.9 and minimum Umin values of the phase-

average axial velocity U within the boundary layers at each phase (top) and the Fourier 

Series (FS) 0
th

- and 2
nd

-order harmonics, H0 and H2, of those values respectively (bottom) 

are presented.  The U≤0.9 and Umin are the average value for U ≤ 0.9 and the minimum 

value, respectively, out of the SPIV measured U data within the boundary layer at each 

phase positions and x locations shown in Fig. 6-25.  Note that the U≤0.9 and Umin for 180 

≤  < 360 shown in Figs. 6-26 (top) and 6-27 (top) are the mirrored values from those for 
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0 ≤  < 180 anti-symmetrically.  From Fig. 6-26 (top), in spite of the considerable dy-

namic changes of the boundary layers in shape and size, the U≤0.9 values are almost con-

stant about 0.8 through the sway phase and along the hull longitude.  From Fig. 6-26 

(bottom), H0 of U≤0.9, the period mean value, first slightly increases from 0.81 at x = 

0.135 to 0.84 at x = 0.235, and then decreases at the aft body to 0.81 and 0.79 at x = 0.735 

and 0.939, respectively.  From Fig. 6-26 (bottom), H2, i.e. the oscillation amplitude of 

U≤0.9 values along with the sway motion, is 0.014 in average, corresponding to about 2% 

of H0, which has the largest value of 0.022 at x = 0.735, about 3% of H0.  In contrast, 

from Fig. 6-27, the changes of Umin with  and x are larger than U≤0.9.  The H0 of Umin is 

0.65 at x = 0.135 and then decreases to 0.43 at x = 0.935 rather monotonically.  The aver-

age H2 value along x is 0.056, about 10% of average H0 = 0.55, and the maximum H2 is 

0.092 at x = 0.735, about 18% of the H0 value at the location.  

Cross flow velocity (V, W) vector field is shown in Fig. 6-28.  In the figure, 

shown are the every 6
th

 vectors from the SPIV measurement grid points in both y and z 

directions.  While the vector field exhibits directions of the flow and the presence of vor-

tices around the model, as an alternative way presenting the cross flow, in Fig. 6-29, the 

cross flow vector magnitude S = (V
2
 + W

2
)
1/2

 and the cross flow streamlines are shown 

together.  The spots where flow is accelerating or stagnant are obvious from the S con-

tours and directions of the flow is clear from the streamlines and the location and size of 

the vortices exposed as well from the streamlines.  At the fore body, x = 0.135 and 0.235, 

the cross flow at  = 0 and 45 is directed downward and accelerating along the hull at 

the portside and overturns the keel and the SD vortex (that is not generated by the cross 

flow, rather it is being pushed and displaced by the cross flow stream to the leeward side) 

and then merges with the flow at the starboard.  The SD vortex at x = 0.135 is small in 

size,   0.01 L, and grows at x = 0.235,   0.02 L.   is the diameter of concentric 

streamline spirals.  At  = 90 where the incoming flow is tangent to the model path line, 

flow is nearly symmetry about the model center plane and mainly down- and outward 
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with displaced by the volume of fore body.  At  = 135, the whole flow reverses as the 

model changes its direction in sway motion.  At the aft body, x = 0.735 and 0.935, the 

flow at  = 0 and 45 is nearly lateral at the portside and turns to upward past the center 

plane becoming reversal in part where it meets the BK vortex at starboard.  At  = 90, 

flow is mainly up- and inward, however, the flow is not symmetry about the center plane 

due to the presence of the SD vortex at the starboard.  The flow reverses at  = 135, si-

milarly as at the fore body.    

6.2.1.3 Turbulent kinetic energy and Reynolds stresses 

Turbulent kinetic energy k field is shown in Fig. 6-30.  In the figure, the k field is 

shown only for k ≥ 0.001 and blanked out for k < 0.001.  Reynolds number of the flow is 

Re = UCL/ = 4.610
6
 where UC and L are the towing carriage speed and model length, 

respectively, and  is the kinematic viscosity of fresh water.  It is noted that for pure sway 

test only a limited number of data (N) is used for phase-averaging, typically N  60 for x 

= 0.135, 0.235, 0.735 and N  200 for x = 0.935.  Thus, phase-averaged turbulent variable 

values such as Reynolds stresses including the turbulent kinetic energy may not be fully 

converged statistically, and may include the statistical convergence error EU up to 50% 

for data at the former and to 25% at the later x locations, respectively (See Chapter 4 and 

Fig. 4-7b for s
2
/sref

2
 = 1.0).  From Fig. 6-30, the shapes of k contours in general coincide 

with those of the mean axial velocity contours shown in Fig. 6-25, and typically k exhi-

bits larger value inside the boundary layer of the model and at the core region of the vor-

tices. 

In Figs. 6-31 and 6-32, presented are the time histories (top) and the FS harmonics 

(H0 and H2 respectively for 0
th

- and 2
nd

-order) of the time history (bottom) for kmean and 

kmax, respectively.  Herein kmean and kmax are defined as the average k value for k ≥ 0.001 

and for k ≥ 0.01, respectively, which represents approximately the mean and the maxi-

mum k values within the flow region of interest, respectively.  The k = 0.001 contour line 
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corresponds to the boundary line (flow side) of each contour plot, and the k = 0.01 con-

tour line is shown at each contour plots in Fig. 6-30 (white colored contour lines), respec-

tively.  From Fig. 6-31 (top), kmean is oscillating between 0.004  0.008 (I = 0.052  

0.073, or about 5  7% of UC) at x = 0.135 and 0.235, whereas almost flat with kmean  

0.004 (I = 0.052 or about 5% of UC) at x = 0.735 and 0.935.  From Fig. 6-31 (bottom), H0 

= 0.006 and H2 = 0.002 at x = 0.135 are respectively the largest, and then both decreases 

gradually to H0 = 0.004 and H2  0 at x = 0.935.  On the other hand, from Fig. 6-32 (top), 

kmax is between 0.011  0.015 and oscillates with the sway phase .  The turbulent intensi-

ty within the flow region is I = (2/3k)
1/2

 = 0.086  0.1, corresponding to about 9  10% 

of UC.  From Fig. 6-32 (bottom), the period mean value of kmax is the largest at x = 0.135 

with H0 = 0.014 and the oscillation amplitude is the largest at x = 0.235 with H2 = 0.002 

that is about 14% of the largest H0 value.  In a mean sense, consequently, the flow may 

have k  0.013 (I  9% of UC) locally at the high turbulent region and k  0.005 (I  6% 

of UC) in overall average, typically larger at the bow but tend to be local while decreasing 

along the ship length gradually. 

Reynolds normal (uu, vv, ww) and shear (uv, uw, vv) stress fields are shown in 

Fig. 6-33 through Fig. 6-38.  Of the normal stresses, uu and vv fields shown in Figs. 6-33 

and 6-34, respectively, exhibit almost and nearly similar appearances as the k field shown 

in Fig. 6-30, respectively, indicating that those components are dominant, whereas ww 

field shown in Fig. 6-35 is seemingly weaker than the other components.  On the other 

hand, the shear stress uv, uw, and vw fields shown in Figs. 6-36  6-38, respectively, re-

veal smaller order of magnitude than the normal stresses, where the uv is apparently the 

dominant component.  The Reynolds stresses are averaged over the regions where k ≥ 

0.001 and k ≥ 0.01, similarly as for kmean and kmax, respectively, and the period mean val-

ues of those (corresponding to H0) are shown in Figs. 6-39 and 6-40, respectively, with 

the normal stresses shown at top and the shear stresses at the bottom, respectively.  For 

the region where k ≥ 0.001 (i.e. the overall field average), from Fig. 6-39, the mean nor-
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mal stress uu, vv, ww values are 0.005, 0.003, 0.002, respectively, and the mean shear 

stress uv, uw, vw values are 0.002, 0.001, and 0.001, respectively.  For the region where k 

≥ 0.01, from Fig. 6-40, the mean values of normal stresses uu, vv, ww are 0.013, 0.009, 

0.004 along the ship length, respectively, and those of the shear stresses uv, uw, vw are 

0.006, 0.002, 0.002, respectively.  The Reynolds stresses are anisotropic, if normalized 

with the isotropic stress value, (2/3)k, the normal stresses uu, vv, ww are 1.5, 1.0, 0.5, 

respectively, and the shear stresses uv, uw, vw are 0.7, 0.2, and 0.2, respectively, which 

are almost common for both of the k ≥ 0.01 and k ≥ 0.001 regions. 

6.2.1.4 Axial vorticity field 

Axial vorticity x field is shown in Fig. 6-41, where presented are vorticity fields 

with values x ≥ 10 and x ≤ -10, otherwise blanked and not shown.  The vorticity field is 

seen from behind the model and the axis is out of the paper from the figures, thus the pos-

itive axial vorticity (x > 0, colored in red) is rotating counter-clockwise and the negative 

axial vorticity (x < 0, colored in blue) is rotating clock-wise in the figure, respectively.  

Several vortices are observed from the x field, such as the sonar dome (SD) vortex at the 

fore body, at x = 0.135 and 0.235, below and underneath the keel, respectively, and bilge 

keel (BK) vortices at the aft body, at x = 0.735 and 0.935, at the mid-bilge positions and 

below around the bottom profile, respectively, and the aft body keel (AK) vortex beneath 

the center keel position.  A couple of minor vortices can be observed at the fore body, 

such as the fore body keel (FK) vortex beneath the keel and the free surface (FS) vortex 

typically at the windward side free surface, however, those vortices are in general not 

clear from the figures, and for the latter vortex its locations maybe out of the view of 

present SPIV measurement and measured partially.  The overall structure of the vortical 

flow is presented in Fig. 6-24, and therein the CFD simulation result (Sakamoto 2009) 

discloses more complete pictures of the vortical flow.   
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In Fig. 6-42, the time histories of the maximum/minimum x value of the SD vor-

tex along the model sway motion phase position , respectively for x = 0.135 and 0.235 

locations.  The maximum x value is when the SD vortex has positive x values, e.g. at  

= 0 and 45 from Fig. 6-41, and the minimum value is when negative x value, e.g. at  

= 135 from Fig. 6-41.  When the maximum/minimum values are FS reconstructed such 

that Hcos(t – ), the harmonic amplitude H = 293 and 213 and  = 11 and 27 at x = 

0.135 and 0.235, respectively, indicating about 3% decrease of its magnitude and a phase 

difference  = 16 between the two locations, respectively.  The trend of SDV vortex at 

the later x locations, however, is precluded, due to the lack of the measurement data at 

the after body locations.   

Similarly, in Fig. 6-43, the maximum/minimum x value time histories of the BK 

vortex are shown for x = 0.735 and 0.935 locations.  Note that the time history of BK vor-

tex, however, is defined in a different way form the SD case.  As can be seen from Fig. 6-

41 for x = 0.735 location, the BK vortices at the portside and starboard are asymmetry 

respectively with respect to the model sway motion; one is at the wind side and the other 

is at the leeward side and after one half cycle respectively at the reverse side.  Thus, the 

time histories at the portside/starboard may not be continuous along the model sway mo-

tion, i.e. along , but at the wind/leeward side of the flow.  In other words, from Fig. 6-

43, the data at the first half of the cycle are from the BK vortices at the portside and those 

at the second half are from the BK vortices at the starboard side, which are at the wind 

side through the cycle.  When data are FS reconstructed similarly as for the SD vortex, H 

= 424 and 274 and  = 19.4 and 35.9 at x = 0.735 and 0.935, respectively.  The H‟s of 

the BK vortices at x = 0.735 and 0.935 are 145% and 85% of the SD vortex H value at x 

= 0.135, indicating that BK vortex may be stronger than SD vortex locally and decay fast.  

Whereas the phase difference of the BK vortices between the two x locations,  = 16.5, 

is similar with that for the SD vortex.   
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Lastly, the time history of AK vortex maximum/minimum x is shown in Fig. 6-

44.  The AK vortex is located nearly at the aft body keel center position and its behavior 

is symmetry with respect to the model sway motion, and the time history is defined as the 

same way as for SD vortex.  AK vortex is observed only at x = 0.935, where H = 189 

(about 65% of SD vortex H at x = 0.135) and  = -11.3 from the FS reconstruction.    
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

 

Figure 6-22 Trajectory of model in pure sway motion (top) and overviews of the flow around the model (below).  
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(5)  = 180 (6)  = 225 (7)  = 270 (8)  = 315 

    

 

 

Figure 6-22–Continued  
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(a) (b) 

  

 

Figure 6-23 Vortical flow structures around the DTMB 5512 geometry in steady maneuvers for: (a) straight-ahead and (b) static drift 
at  = 10 cases. (CFD simulations by Sakamoto 2009).  
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(a) CFD (b) SPIV 

 = 0 

  

 = 45 

  

 = 90 

  

 = 135 

  

Figure 6-24 Vortical flow structures around the DTMB 5512 geometry in pure sway ma-
neuvering with max = 10: (a) Iso-surfaces of relative helicity (CFD simula-
tions by Sakamoto 2009) and (b) contours of axial vorticity (SPIV). 

BKS 

SDS 

AKC 

BKP 

FSP 

AKC 

SDS 

BKP 

FSP 

SDS 

BKP 

AKC 

SDS 

BKP 
AKC 

BKS 

FSP 

FSP 

FSP 

BKS 

SDP 

BKS 



 

 

2
2
8
 

(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-25 Phase-averaged axial velocity U field for pure sway test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    
    

    

Figure 6-25–Continued  
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Figure 6-26 Time histories of the average axial velocity U≤0.9 (top) and FS harmonics 
(bottom) for pure sway test. 
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Figure 6-27 Time histories of the minimum axial velocity Umin (top) and FS harmonics 
(bottom) for pure sway test.  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-28 Phase-averaged cross-flow (V,W) vector field for pure sway test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    
    

    

Figure 6-28–Continued 
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Figure 6-29 Cross flow velocity vector magnitude S = (V
2
 + W

2
)
1/2

 and streamlines for pure sway test. 
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Figure 6-29–Continued 
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Figure 6-30 Phase-averaged turbulent kinetic energy k field for pure sway test. 
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Figure 6-30–Continued 
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Figure 6-31 Time histories of kmean (top) and FS harmonics (bottom) for pure sway test. 
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Figure 6-32 Time histories of kmax (top) and FS harmonics (bottom) for pure sway test.  
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Figure 6-33 Phase-averaged Reynolds stress uu field for pure sway test. 
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Figure 6-33–Continued 
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Figure 6-34 Phase-averaged Reynolds stress vv field for pure sway test. 
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Figure 6-34–Continued 
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Figure 6-35 Phase-averaged Reynolds stress ww field for pure sway test. 
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Figure 6-35–Continued 
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Figure 6-36 Phase-averaged Reynolds stress uv field for pure sway test. 
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Figure 6-36–Continued 
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Figure 6-37 Phase-averaged Reynolds stress uw field for pure sway test. 
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Figure 6-37–Continued 
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Figure 6-38 Phase-averaged Reynolds stress vw field for pure sway test. 
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Figure 6-38–Continued 
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Figure 6-39 Average normal (top) and shear (bottom) Reynolds stresses for kmean (Pure 
sway test).  
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Figure 6-40 Average normal (top) and shear (bottom) Reynolds stresses for kmax (Pure 
sway test).  
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Figure 6-41 Axial vorticity x field for pure sway test. 
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Figure 6-41–Continued  
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Figure 6-42 Time histories of maximum/minimum axial vorticity value of the sonar dorm 
vortex (SD) for pure sway.  

 

Figure 6-43 Time histories of maximum/minimum axial vorticity value of the bilge keel 
vortex (BK) for pure sway.  
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Figure 6-44 Time histories of maximum/minimum axial vorticity value of the aft-body 
keel vortex (AK) for pure sway test.  
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6.2.2 Pure yaw flow field 

Presentations of the pure yaw flow field data herein are using the same format and 

methodology as for the discussions for pure sway at the previous section.  The details of 

the presentation methodology and formats, thus, are not repeated in the discussions here-

in, such as: blanking out flow data and not showing in the contour plots for the data in a 

certain range, e.g. U > 0.95, k < 0.001, -10 < x < 10; defining U≤0.9 as the mean U value 

over a flow region where U ≤ 0.9 and Umin as the minimum U value (see Section 6.2.1.2); 

presenting the cross-flow field by showing the contours of the velocity (V, W) vector 

magnitude, S = (V
2
+W

2
)
1/2

, with overlaid the cross-flow streamlines over the contours, to 

represent respectively the magnitude and direction of the flow (also see Section 6.2.1.1); 

defining k≥0.005 (corresponding to k≥0.01 for pure sway) and k≥0.001 as the mean k values 

over the flow regions where k ≥ 0.005 and k ≥ 0.001, respectively, to represent the maxi-

mum and average k value, respectively, within the flow (see Section 6.2.1.3); and defin-

ing the maximum and minimum x values as those values when x > 0 and x < 0, re-

spectively, within a flow region of interest (see Section 6.2.1.4).   

At the top of Fig. 6-45, the trajectory of model (shown as a dashed-line; the path-

line of the model mid-ship point) in a pure yaw motion is shown.  The model is in a rota-

ry yaw (or its heading)  = -0cost motion, turning about its mid-ship point, such that 

the model is always tangent to the path-line while towed at a constant speed UC (depicted 

with a red colored arrow in the figure).  Where, the maximum heading angle 0 = 10.2, 

the yaw motion angular frequency  = 1.672 UC/L (or a cyclic frequency f = /2 = 

0.134 Hz), and the towing speed UC = 1.531 m/s, and the model length L = 3.048 m, re-

spectively.  Angular velocity of the model rotation, yaw rate r = d/dt, is positive when it 

turns to starboard (depicted with a blue colored circular arc arrow in the figure).   At 

every  = t = 45 phase angle positions of the path-line, the outline of the model is 

shown with numbered 1 to 9, respectively.  Below the model trajectory, overviews of the 

flow around the model at each of those phase angles are shown, along with the model 
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path-line (the light-blue colored line) similarly as in Fig. 6-22 for pure sway.  Flow data 

shown are the axial velocity U contours and the cross-flow (V,W) streamlines at five 

model-longitudinal locations, x = 0.135, 0.335, 0.535, 0.735, and 0.935, respectively.  

Under below the sonar dorm of the model drawing shown at each phase position, the 

turning direction, heading angle  and yaw rate r values of the model at the instant are 

presented.   At (1)  = 0, model heading is the maximum to the negative direction,  = -

10.2, yet, the incoming flow is parallel to the model longitudinal as the model is tangent 

to its path-line.  Whereas the model yaw rate r = 0 at the instant, thus the flow pattern ex-

hibits a typical one for the case when the model is in a „straight-ahead‟ condition; down- 

and outward at the bow and up- and inward at the stern as per Longo et al. (2007), Gui et 

al. (2001a), and Olivieri et al. (2001).  However, the apparent size of the vortical flow 

from the figure is considerably bigger than those from the straight-ahead case (e.g. Fig. 6-

23a), obviously formed at the previous cycle of the yaw motion and lasting.  The model, 

then, begins turning to starboard with increasing yaw rate, at (2)  = 45,  = -7.2 with r 

= 0.21, until (3)  = 90 where  = 0 and yaw rate is the maximum r = 0.3 (UC/L), and 

continues turning but with decreasing yaw rate, at (4)  = 135,  = 7.2 with r = 0.21, 

and then finishes the turning at (5)  = 180 where the heading  = 10.2 is the maximum 

to the positive direction with r = 0; which completes the first half cycle of the pure yaw 

motion.  Through the yaw motion, due to the rotary motion of the model, the cross-flow 

at the bow typically becomes down- and inward at the wind side and transversal and out-

ward at the leeward side; and at the stern, vice versa.  The vortical flow, on the other 

hand, changes its size and the direction of its rotation.  The model motion and the flow at 

the second half of the cycle are anti-symmetric mirrors of those at the first half cycle, 

such that  = (5) 180, (6) 225, (7) 270, and (8) 315 to  = (1) 0, (2) 45, (3) 90, and 

(4) 135, respectively, and  = 360 is identical with  = 0. 
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6.2.2.1 Vortical flow structure 

The vortical flow around the DTMB 5512 geometry, the same geometry of the 

model,  in two steady maneuvers, static drift and steady turn, are shown in Fig. 6-46 (a) 

and (b), respectively.  In the figures, vortices in the flow were visualized from the CFD 

simulations by Sakamoto (2009), by using the Q = 30 iso-surfaces (Hunt et al., 1988) 

with colored by the normalized relative helicity density level.  Simulation was with drift 

angle  = 10 for the static drift maneuver (transversal incoming flow left to right from 

Fig. 6-46a) and with a constant yaw rate r = 0.3 for the steady turn maneuver (turning to 

the starboard side; transversal incoming flow right to left at the bow whereas in reverse at 

the stern from Fig. 6-46b), respectively.  Note that Fig. 6-46 (a) for static drift is the same 

as Fig. 6-23 (b), repeated herein for comparisons with the steady turn flow.  Compared to 

static drift, the same kind of vortices are observed from the steady turn maneuver, such as 

SD, BK, and AK vortices (major ones) from the sonar dome, bilge keels, and aft body 

keel, respectively and FK, FS, and T vortices (minor ones) from the fore body keel, free 

surface, and transom, respectively.  Of the vortices, SD vortex exhibits opposite signs 

(red vs. blue in the figure; direction of rotation) between two maneuvers due to the differ-

ent directions of transversal in coming flow, which is generated from the sonar dome at 

the fore body and then convected downstream, whereas the other vortices that formed at 

the aft body show the same signs for both maneuvers as the flow direction is same.  The 

size of vortices for steady turn in general is relatively small compared to static drift (con-

siderably small for BK) as the overall incoming flow direction is more aligned to the hull 

longitude (tangent to the circular path-line) for the former case.  The shape of the vortices 

is rather straight for the static drift case, aligned with the incoming flow direction, whe-

reas rather curvy for the steady turn case, following the circular path-line of the hull 

form. 

Fig. 6-47 (a) and (b) shows the vortical structure of flow around the hull form in a 

pure yaw maneuvering, with visualized from the CFD simulations by Sakamoto (2009) 
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and from the SPIV measurements, respectively, at the four phases of pure yaw cycle,  = 

0, 45, 90, and 135, in a sequence.  From the CFD simulation result shown at Fig. 6-47 

(a), the overall vortical flow structure for pure yaw maneuver is similar as that of the 

steady turn shown previously in Fig. 6-46 (b) with the same kinds of vortices, whereas 

the sign (direction of vortex rotation), shape, size, and location of those vortices are 

changing dynamically in time along with the yaw motion.  At  = 0, the SD vortex is the 

major one, with stretched along the ship length from the bow to the stern.  FK and AK 

vortices are the second largest, whereas BK vortex is very small in size at both the port 

and starboard sides.  At  = 45, the SD vortex generated from earlier phase (SDS in the 

figure) is detached from the sonar dorm and a new one with opposite sign (SDP in the 

figure) is formed.  At  = 90, the newly generated SDP vortex is growing (i.e., convect-

ing to the downstream), and the BK vortex at the portside (BKP in the figure) is as well 

growing, and then those vortices become the major ones at  = 135.  Note that the steady 

turning maneuver shown in Fig. 6-46 (b) corresponds to the  = 90 case where the yaw 

rate is the same as the steady turn case with r = 0.3 but with a non-zero yaw acceleration, 

dr/dt = 0.5 (UC
2
/L).  On the other hand, from Fig. 6-47 (b), the SPIV measurement results 

shows a very similar vortical structure at each phase, with visualized with the axial vor-

ticity x contours.  Each of the vortices are identified by comparing the sign and the posi-

tions of x contours with those of the helicity iso-surfaces from the CFD simulations, and 

labeled in the figures. 

6.2.2.2 Phase-averaged velocity field 

In Fig. 6-48, shown are the phase-averaged axial velocity U field at four phase 

positions,  = 0, 45, 90, and 135, and at six longitudinal locations, x = 0.135, 0.335, 

0.535, 0.735, 0.935, and 1.035.  The flow field is seen from behind the model, i.e. look-

ing upstream, and the incoming flow is coming out of the paper from the figure, and the 

model is turning its head to the starboard side (from left to right in the figure) about the 
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mid-ship point.  The overall trend of U field for pure yaw is similar as for pure sway; at 

the bow appears thin boundary layer that is growing with the model longitudinal length, 

and becomes very thick at the stern.  Dead flow zone (e.g., where U ≤ 0.5, the dark-blue 

colored contour level in the figures) appears at x = 0.735 and 0.935, locally inside the 

boundary layer, and at the wake region, x = 1.035, becomes considerably large near the 

free surface.  The flow is also retarded at the regions where the vortices present, e.g. un-

der below the model where the SD vortices are, near around aft body bilges where the 

BK vortices are, and at the aft body keel where the AK vortices are.  The shape and size 

of the boundary layers are typically asymmetric about the model center plane, and change 

continuously with time, i.e. with , in accordance with the yaw motion, may possibly be 

interacting with the flows induced by the nearby vortices. 

In Figs. 6-49 and 6-50, time histories (top) and FS harmonics (bottom) of U≤0.9 

and those of Umin are shown, respectively.  U≤0.9 is the average U value over the region 

where U ≤ 0.9 and Umin is the minimum U value within the region, respectively, at a giv-

en  and x.  Time histories are shown for all the 32 phase positions available from the 

SPIV measurements, from 0 to 348.75 with a phase step  = 11.25, and FS harmonics 

are shown for the 0
th

- and 2
nd

-order with designated as H0 and H2, respectively, in the 

figures.  From Fig. 49 (top), the U≤0.9 values oscillate with  for all x locations.  The pe-

riod mean values of U≤0.9 time-history is almost flat along the model length, i.e. H0  0.8 

for x = 0.135  0.935 from Fig. 6-49 (bottom), except for x = 1.035 where H0 = 0.75.  The 

oscillation amplitude of U≤0.9 time-history is as well nearly constant with H2  0.009, 

about 1.2% of H0, again except for x = 1.035 where H2 = 0.023 that is about 3% of the H0 

at the same x location.  Next for Umin, from Fig. 50 (top), time-histories as well exhibit 

oscillations along with the  position.  Contrary to U≤0.9, the period mean H0 and the os-

cillation amplitude H2 of Umin time histories are not flat, but change along the model 

length.  From Fig. 6-50 (bottom), H0 = 0.67 at x = 0.135 and decreases nearly linearly 

along x, H0 = 0.39 at x = 1.035, whereas H2 = 0.015 (2% of H0) at x = 0.135 and increases 
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gradually with x, H2 = 0.038 (9% of H0) at x = 0.935, then sharply at x = 1.035 where H2 

= 0.071 (18% of H0). 

Cross-flow vector (V,W) field is shown in Fig. 6-51, and the contours of S = 

(V
2
+W

2
)
1/2

 with overlaid the cross-flow streamlines, showing the magnitude and the di-

rection of the cross-flow, respectively, are shown in Fig. 6-52.  From Fig. 6-51, the cross-

flow vectors are in general pointed to the portside at the bow and to the starboard at the 

stern, as the model is turning its head to the starboard and its tail to the portside, respec-

tively.  Whereas the vectors point outward at x = 0.335 and inward at x = 0.535, respec-

tively, but the velocity magnitude is usually small compared with those at the bow or 

stern.  On the other hand, cross-flow vectors visualize clearly the rotational motions of 

the fluid at the vortical flow regions, such as near around the sonar dome (from the fig-

ures as shown with the model projected into the paper), around the bilge keels at the port- 

and starboard-side, and below the aft body center keel, where the SD, BK, and AK vor-

tices exist, respectively.   

The directions of cross-flow are even more obvious with vortices exposed clearly 

from the cross-flow streamlines as shown in Fig. 6-52.  At x = 0.135, cross-flow in gen-

eral directs toward portside as the model is turning to the starboard side, with accelerated 

locally at the starboard side, i.e., the wind side, where the cross flow velocity magnitude 

S = 0.2  0.3.  Compared to model tangential speed Vt = rdx = 0.11 at  = 90, where the 

model yaw rate r = 0.3 and the radial distance dx = 0.365 from the mid-ship, the cross-

flow speed at the region is about 2  3 times faster than the Vt in general.  The cross-flow 

speed weakens at x = 0.336 and 0.535 typically with S < 0.1, where in general flow is di-

verging from and converging to the hull, respectively.  At the aft body, x = 0.735, 0.935, 

and 1.035, cross-flow is usually toward the starboard side as the model in turning its tail 

to the portside.  Typically cross-flow speed S = 0.05  0.15, usually slower than the mod-

el tangential velocity Vt = 0.13 at x = 0.935 at  = 90, except for the regions near the vor-

tices.  The SD vortex is clearly seen from the streamlines.  Particularly at  = 0 where 
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the model yaw rate r = 0, the concentric or spiral flow discovers the size and position of 

the SD vortex along the entire model length.  The approximate sizes of SD vortex   

0.01 L at x = 0.135, and then grows along the model length,  = 0.02  0.025 L between x 

= 0.335 and 0.535, and  = 0.03  0.04 L between x = 0.735  1.035, where  is an ap-

proximate outer diameter of the concentric streamlines at  = 0, respectively.  The ap-

proximate center point of SD vortex at  = 0 is just below the model keel position, (y,z) 

 (0,-0.05) at x = 0.135, and then shifted in both lateral and vertical directions.  In lateral 

direction, the center point first remains near the center plane at the fore body and then 

gradually moves to portside at the aft body, and located at y  -0.028 at x = 1.035.  In ver-

tical direction, the center point first shifts down at the fore body, to z  -0.065 at x = 

0.535, and then up at the aft body, to z  -0.04 at x = 1.035, following the model bottom 

profile.  At the other  positions, the size and location (including the direction of rotation) 

of the SD vortex is changing in time, i.e. with , and is often superposed with the parallel 

transverse flow at the aft body, the vortex streamlines open up or not clearly seen.  The 

strength of the SD vortex including the difference kinds of the vortices will be discussed 

later together with the axial vorticity field. 

6.2.2.3 Turbulent kinetic energy and Reynolds stresses 

Turbulent kinetic energy k field (for k ≥ 0.001) is shown in Fig. 6-53 for  = 0, 

45, 90, and 135 cases.  Reynolds number of the flow Re = UCL/ = 4.610
6
, same as 

for pure sway test.  The overall structure of the field exhibit coherence with the phase-

averaged axial velocity U field shown in Fig. 6-48; at the bow with thin layer that is 

growing along the model length and becomes very thick at the stern, i.e. within the boun-

dary layers and inside the vortical flow regions.  The core regions with high k values (e.g. 

k ≥ 0.01) exist typically near at the model hull surfaces, at the center of the vortical flow 

regions, and near the free surface behind the model transom.  The apparent shapes of the 

k field and the locations of the core region vary in time, i.e. along with the phase of pure 
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yaw motion.  In Figs. 6-54 and 6-55, time histories (top) and FS harmonics (bottom) of 

kmean and those of kmax are shown, respectively.  Similarly for pure sway case, herein the 

kmean and kmax are defined as the average k values respectively within the core regions 

where k ≥ 0.001 and within the overall k field where k ≥ 0.01, which respectively 

represents the approximate maximum and average k value within the turbulent flow.  In 

the figures, time histories are from the all 32 phase positions of the SPIV measurement, 

and the FS harmonics are for the 0
th

- and 2
nd

-order harmonics (with designated respec-

tively as H0 and H2) corresponding to the period mean value and to the dominant ampli-

tude of the time-history oscillations.  From Fig. 6-54 (top), kmean = 0.0025  0.0045 oscil-

lating with  particularly at x = 0.135.  From Fig. 6-54 (bottom), the period-mean value of 

the oscillating kmean is nearly constant along the model length with H0  0.003 whereas 

slightly larger H0 values at x = 0.135 and 1.035.  This indicates that in a mean sense the 

overall turbulence intensity I = (2/3k)
1/2

  0.045 in the flow, or a turbulent velocity fluc-

tuation  4.5% of UC.  The kmean oscillation amplitude is the maximum at x = 0.135 with 

H2 = 0.0007 (19% of H0), and then undulates with x with a mean H2 = 0.0002 that is 

about 7% of H0.  On the other hand, at the core region, kmax = 0.011  0.016 from Fig. 6-

55 (top) as well oscillating with .  From Fig. 6-55 (bottom), the period mean kmax value 

decreases gradually along the model length from H0 = 0.014 at x = 0.135 to H0 = 0.011 at 

x = 0.935, and then just behind the model it increases sharply with H0 = 0.014 at x = 

1.035.  Turbulence intensity I = 0.086  0.097 in the core region, or about 9  10% UC of 

turbulent velocity fluctuations.  The oscillation amplitude of kmax is the maximum at the 

bow with H2 = 0.0015 (11% of H0) at x = 0.135, and drops fast along the model length 

with H2  0.0005 (3  4% of H0) between x = 0.335 and 0.535 and with H2  0.00025 ( 

2% of H0) at the aft body.  

Reynolds normal (uu, vv, ww) and shear (uv, uw, vw) stress fields are shown in 

Fig. 6-56 through Fig. 6-61, respectively.  Despite the quite dissimilar flow structures be-

tween the phase-average axial U and cross-flow (V,W) velocity fields shown in Fig. 6-48 
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and Fig. 6-51 (or Fig. 6-52), respectively, the apparent structures of the Reynolds stress 

fields from the figures exhibit a coherence between the stress components, rather similar 

to the U field.  In general, the order of magnitude of the normal stresses is larger than the 

shear stresses, and typically the uu and uv stresses respectively are the largest of the nor-

mal and shear stresses.  In Figs. 6-62 and 6-63, the average normal (top) and shear (bot-

tom) stress values over the regions for kmean (k ≥ 0.001) and kmax (k ≥ 0.01) are shown, 

which are as well averaged values over the pure yaw motion period, i.e. corresponding to 

H0‟s of the FS for those variables.  Note that shear stresses shown in the figures are root-

mean-squared (rms) values.  From Fig. 6-62, both the normal and shear stresses are near-

ly constant along the model length with average values (uu, vv, ww) = (0.0029, 0.0019, 

0.0009) and (uv, uw, vw) = (0.0012, 0.0005, 0.0003), respectively.  The normal stress 

values, however, tend to increase at the bow (x = 0.135) and in the wake (x = 1.035).  Of 

the normal stresses, uu is the largest, followed by vv, and ww is the smallest, whereas for 

the shear stresses, uv is the largest and uw and vw are both small.  On the other hand, at 

the core region where k ≥ 0.01, from Fig. 6-63 the normal (top) and shear (bottom) 

stresses are nearly constant with x, (uu, vv, ww)  (0.0167, 0.0072, 0.0011) and (uv, uw, 

vw)  (0.0077, 0.0013, 0.0008), up to x = 0.735, where the uu and uv are respectively the 

largest normal and shear stresses.  After x = 0.735 at the stern part, nevertheless the sharp 

increase in kmax value as shown in Fig. 6-55 (bottom), those uu and uv stress values de-

crease fast whereas the other stresses values increase with x, respectively, thus the Rey-

nolds stress field becomes more of isotropic than at the front part of the model.  The Rey-

nolds stress anisotropic tensor bij = uiuj/2k - ij/3 values shown in Fig. 6-64 for the normal 

(top) and the shear (bottom) stresses reveals this more clearly.  The Reynolds stress ani-

sotropic tensor bij is the deviatoric part of the Reynolds stress tensor, aij = uiuj – (2/3)kij 

with normalized with 2k.  The bij values show how far the elemental stress is deviated 

from the mean value, thus bij values close to zero indicate more isotropic stress tensor. 
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Consequently, the flow has a turbulent kinetic energy k
1/2

  5.4%, the normal 

Reynolds stresses (uu
1/2

, vv
1/2

, ww
1/2

)  (5.4%, 4.4%, 3%), and the rms of the shear Rey-

nolds stresses (uv
1/2

, uw
1/2

, vw
1/2

)  (3.5%, 2.2%, 1.7%) of UC, respectively, in average 

over the turbulent flow field.  Locally, the flow may have turbulent kinetic energy k
1/2

 ≥ 

11.3%, and normal stresses (uu
1/2

, vv
1/2

, ww
1/2

) ≥ (12.9%, 8.5%, 3.3%) of UC, and the rms 

values of the shear Reynolds stresses (uv
1/2

, uw
1/2

, vw
1/2

) ≥ (8.8%, 3.6%, 2.8%) of UC, re-

spectively.  The Reynolds stresses are anisotropic; however, locally those may become 

less anisotropic at the stern part and in the wake region.  Those average k and Reynolds 

stress values are similar or smaller than the maximum values of (k
1/2

, uu
1/2

, vv
1/2

, ww
1/2

, 

uv
1/2

, uw
1/2

) = (5.4%, 5.3%, 4.1%, 3.7%, 2.4%, 2.8%) of UC from the steady test by Lon-

go et al. (2007).  The steady test was using the same model with a straight-ahead condi-

tion and the flow was measured at the nominal wake region (i.e., x = 0.935). 

6.2.2.4 Axial vorticity 

Axial vorticity x field (for x ≤ -10 and x ≥ 10) is shown in Fig. 6-65 for  = 0, 

45, 90, and 135.  From the figures vortices such as the sonar dome (SD), bilge keel 

(BK), and aft body center keel (AKC) vortices are more clearly seen than from the cross-

flow vector or streamline field shown in Figs. 6-51 and 6-52, respectively, from which 

the vortices at certain phases are not obvious with superposed with the nearby parallel 

transverse flow and streamlines open up.  SD vortex is the most dominant one, which can 

be seen most clearly from the Fig. 6-65 at  = 0 (the first column from the left), where 

the SD vortex is located at the portside of the model within a range of y = -0.04  0.01 

and z = -0.03  -0.07 in general.  At  = 45, a new counter rotating SD vortex is formed 

at the fore body, x = 0.135  0.535, and the old one from  = 0 is detached from the so-

nar dome and weakens at the aft body, x = 0.735  1.035.  At  = 90 and 135, the new 

SD vortex strengthens and propagates to the aft body and moves to the starboard side.  

BK vortex is the second dominant one, which can be seen most clearly from the Fig. 6-65 
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at x = 0.735 (the third row from the bottom), where two BK vortices are respectively lo-

cated near around the portside and starboard bilge keel positions (as appears in the figures 

with the model projected).  The BK vortices are first generated at x = 0.535 near around 

the port- and starboard side bilge keels but very locally, and grows in size at x = 0.735, 

and then both BK vortices converge toward the model center plane at x = 0.935 and 

1.035, but usually diffused and not clearly seen from the figures.  AKC vortex is the third 

dominant one, which can be seen most clearly from the Fig. 6-65 at x = 0.935 (the second 

row from the bottom), where the AD vortex is located near below the aft body center keel 

position at (y,z) = (0.0, -0.015).  The AKC vortex remains in the wake at x = 1.035, nearly 

at the similar (y,z) position, but typically defused and mixed with other vortices such as 

BK and not clearly seen from the figures.  Other than those three vortices a couple of vor-

tices as well can be seen from the figures.  This includes the vortices near below the fore 

body keel (FK) at x = 0.335 and 0.535, near below the aft body keel (AK) at x = 0.735 

and 0.935, and near the free surface (FS).  Typically, however, these vortices are weak in 

strength compared to those dominant three vortices, and data were not sufficient for anal-

ysis due to limited longitudinal resolution of the measurement (six x locations along the 

model length), and data may contaminated for the FS vortex from the errors of SPIV 

measurement near the free surface, which precludes further discussions for those vortices.  

In Fig. 6-66, shown are the SD vortex (top) time histories of the maxi-

mum/minimum x values, x,max/min, for x = 0.135  1.035 and (bottom) the FS 1
st
-order 

amplitude H and phase angle  values of the x,max/min time histories such that f(t) = 

Hsin(t+) at give x locations.  The x,max/min is defined herein such that the maximum 

x value when x > 0 and the minimum x value when x < 0 at a given phase position .  

From Fig. 6-66 (bottom), H = 292 is the largest at x = 0.135 and drops fast to H = 159 at x 

= 0.335 and increases gradually with x to H = 189 at x = 0.735 and then decreases to H 

=129 at x = 1.035.  Whereas, phase angle  decreases nearly linearly along the model 

length with a slop d/dx = -118.9/L  -2/3L where L is the model length and an inter-
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cept 0 = 191.3  .  This suggests that the phase term  in f(t) is a function of x such 

that (x) = -(m/L)x + 0 where m = 2/3 and 0 = , and thus the x,max/min propagates in 

space and time in a wave-like form such that f(x,t) = H(x)sin(kx - t).  The wave number 

k = m/L (wave length  = 2/k = 2L/m) and the circular frequency  = 2f where f = T
-1

 

and T is the period of pure yaw motion (note that the f is as well the shedding frequency 

for SD vortex).  Then, the phase velocity vp = /k = /T = 2fL/m, or in a non-

dimensional form vp/UC = (2/m)St, where m is the phase change over a ship length L 

and St = fL/UC is the Strouhal number of the SV vortex shedding.  For f = 0.134 Hz, L = 

3.048 m, and UC = 1.531 m/s, which gives St  = 0.2668, and with m = 2/3, then the 

phase velocity vp = 0.8 UC.  This indicates that x,max/min propagates along the model 

length with a speed about 80% of the model towing speed UC.  At a given x location, 

f(x,t) becomes pure sine waves with a amplitude H(x) and with a phase shift  =  - kx as 

shown in Fig. 6-66 (top) for six x location.  On the other hand, at a given time t (or at a 

phase angle ), f(x,t) becomes a sine-like wave of which amplitude H(x) is not a constant 

value but changes with x and with a phase shift  = -t (or  = -).  Examples of the wave 

form at four phase positions,  = 0, 45, 90, and 135 are shown in Fig. 6-67 with com-

pared with the x,max/min values measured from the SPIV.  From the figure, the wave 

model (shown as lines) agrees well with the measured x,max/min values (shown as sym-

bols) except for  = 45 case, may possibly due to the effect of higher order of harmonics 

in the x,max/min time histories shown in Fig. 6-66. 

BK vortices are generated in pairs; one is the portside and another at the starboard 

side, which can be best seen from figures in Fig. 6-65 for x = 0.735 (the third row from 

the bottom), near around the bilge keels positions.  These two vortices typically have the 

same direction of rotation whereas different strength according to direction and magni-

tude of the nearby incoming cross-flow velocity around the bilge keels.  From the vector 

field figures in Fig. 6-51 (or Fig. 6-52 for streamlines) for x = 0.535 (the third row from 

the top), at first when  = 0 the cross-flow near the bilge keels is stronger at starboard 
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than at portside, next at  = 45 the flow weakens at both sides, and then at  = 90 and 

135 the stronger cross-flow comes from the other side, i.e. from the portside.  Accor-

dingly the BK vortex and the axial vorticity is stronger first at the starboard side and then 

switches its position to the portside and continues to develop (with changed its sign), and 

vice versa for the weaker BK vortex at the other side.  Herein the side where the incom-

ing flow is stronger is referred as the „wind‟ side and the other side as the „leeward‟ side, 

respectively.  In Fig. 6-68 the time histories of the x,max/min values of the BK vortices at 

the wind and leeward sides for x = 0.535 (left) and x =0.735 (right), respectively.  In the 

figures two different symbols („delta‟ and „gradient‟) are use to indicate from which side 

came the vortices.  At x = 0.535, although the BK vortices are very local and small in 

size, the x,max/min value is large with H = 115 at the wind side and H = 71 at the lee-

ward side, respectively, from the FS, where the phase angle  = -48.4 and -51.3, respec-

tively.  At x = 0.735, the BK vortices grow in size but decayed in strength with H = 80 at 

the wind side and H = 25 at the leeward side, respectively, where the phase angle  = -

27.5 and -30.3, respectively.  Compared to H = 292 of the SD vortex at x = 0.135 (the 

strongest), the H‟s at x = 0.535 and 0.735 are about 39% and 27% for wind side, respec-

tively, and about 24% and 9% for leeward side, respectively.   

Time histories of the x,max/min values of AKC vortex is shown in Fig. 69 for x = 

0.935 and 1.035.  When FS reconstructed, at x = 0.935 and 1.035, H = 95 and 63, respec-

tively, and  -36.9 and -52.1.  The H‟s are about 33% and 22% of the SD vortex H val-

ue at x = 0.135. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

 

Figure 6-45 Trajectory of model (top) in pure yaw motion and overviews of the flow around the model (below).  
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Figure 6-45–Continued  

 = 10.2; r = 0  = 7.2; r = -0.21  = 0; r = -0.3  = -7.2; r = -0.21 
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(a) (b) 

  

Figure 6-46 Vortical flow structures around the DTMB 5512 geometry in steady maneuver for: (a) static drift at  = 10 and (b) steady 
turn at r = 0.3 cases. (CFD simulations by Sakamoto 2009). 
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 (a) CFD (b) SPIV 

 = 0 

  

 = 45 

  

 = 90 

  

 = 135 

  

Figure 6-47 Vortical flow structures around the DTMB 5512 geometry in pure yaw ma-
neuvering with rmax = 0.3: (a) Iso-surfaces of relative helicity (CFD simula-
tions by Sakamoto 2009) and (b) contours of axial vorticity (SPIV).  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-48 Phase-averaged axial velocity U field for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-48–Continued 
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Figure 6-49 Average axial velocity for U ≤ 0.9 (top) and FS harmonics (bottom).  
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Figure 6-50 Minimum axial velocity (top) and FS harmonics (bottom). 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-51 Phase-averaged cross-flow (V,W) vector field for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-51–Continued  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-52 Cross flow velocity vector magnitude S = (V
2
 + W

2
)
1/2

 and streamlines for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-52–Continued  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-53 Phase-averaged turbulent kinetic energy k field for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-53–Continued  
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Figure 6-54 Average turbulent kinetic energy kmean (top) and FS harmonics (bottom).  
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Figure 6-55 Maximum turbulent kinetic energy kmax (top) and FS harmonics (bottom).  
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Figure 6-56 Phase-averaged Reynolds stress uu field for pure yaw test. 



 
 

 

2
8
8
 

(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-56–Continued  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-57 Phase-averaged Reynolds stress vv field for pure yaw test. 
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Figure 6-57–Continued  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-58 Phase-averaged Reynolds stress ww field for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-58–Continued  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-59 Phase-averaged Reynolds stress uv field for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-59–Continued  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-60 Phase-averaged Reynolds stress uw field for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-60–Continued  
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-61 Phase-averaged Reynolds stress vw field for pure yaw test. 
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(1 or 9)  = 0 (2)  = 45 (3)  = 90 (4)  = 135 

    

    

    

Figure 6-61–Continued  
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Figure 6-62 Average Reynolds normal (top) and shear (bottom) stresses for kmean.  
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Figure 6-63 Average Reynolds normal (top) and shear (bottom) stresses for kmax.  
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Figure 6-64 Average anisostropy bij of normal (top) and shear (bottom) Reynolds stresses 
for kmax.  
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Figure 6-65 Axial vorticity x field for pure yaw test. 
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Figure 6-65–Continued  
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Figure 6-66 Time histories of the maximum/minimum axial vorticity x values of sonar dome 
(SD) vortex (top) and FS harmonics (bottom) for pure yaw.  
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Figure 6-67  Measured (symbols) and reconstructed (lines) x,max/min values of the sonar dome 
(SD) vortex for pure yaw.  
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Figure 6-68 Time histories of the maximum/minimum axial vorticity x values of the bilge keel (BK) vortices at x = 0.535 (left) and x 
= 0.735 (right), respectively, for pure yaw.  
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Figure 6-69 Time histories of the maximum/minimum axial vorticity x values of the aft-
body keel (AK) vortex for pure yaw test.  
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