
Creeping Flow 
Basic assumption for creeping flow: the inertia terms are 
negligible in the momentum equation if Re<<1. 
 
If we nondimensionalize the NS equation with the variables 
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(Note pressure difference scales with U Lµ  instead of 2Uρ  due 
to the basic assumption of creeping flow) 
we obtain the flowing dimensionless momentum equation: 
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Since Re<<1, we have: 

* * *2 *p∇ ≈ ∇ V  
In dimensional form: 

2p µ∇ = ∇ V       (1) 
It should be combined with incompressible continuity equation: 

0∇⋅ =V        (2) 
(1) and (2) are the basic equations for creeping flows. 
 
Taking the curl and them gradient of (1), we obtain two 
additional useful relations, i.e. both the vorticity and the pressure 
satisfy Laplace’s equation in creeping flow: 

2 0∇ =ω       (3) 
2 0p∇ =       (4) 

Since 2ω ψ= −∇  in 2D Stokes flow, where ψ  is the stream 
function, (3) may be rewritten in terms ofψ : 

4 0ψ∇ =       (5) 



Applications of Creeping Flow Theory 
 
1. Fully developed duct flow: inertia terms also vanish 
2. Flow about immersed bodies: usually small particles 
3. Flow in narrow but variable passages: lubrication theory 
4. Flow through porous media: groundwater movement 
 
Drag on an Object in Creeping Flow: 
 
Since the inertia (density) is truly negligible, we have: 

( )total drag force , ,F f U Lµ= =     (6) 
 
Follow the step-by-step method discussed in Chapter 7: 
 There are 4 parameters in the problem ( )4n =  
 There are 3 primary dimensions: M, L, T, ( )4j =  
 We expect only one Pi since 4 3 1k n j= − = − = , and the Pi 
must equal to a constant. The final result is 

F const ULµ= ⋅         (7) 
 
Drag on a Sphere in Creeping Flow: 

 
Fig. 1 Creeping flow over a sphere: the viscous stress components at the 
surface and the pressure distribution in an axial plane 



Consider creeping motion of a stream of speed U about a solid 
sphere of radius a. It is convenient to use spherical polar 
coordinates ( ),r θ  with 0θ =  in the direction of U. The only 
component of vorticity in this axisymmetric problem is ϕω , and 
is given by  
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In axisymmetric flows we can define the Stokes stream function 
ψ , and it is defined in spherical polar coordinates as  
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In terms of stream function, the vorticity becomes 
2

2 2

1 1 1 1
sin sinr r rϕ

ψ ψω
θ θ θ θ

⎡ ⎤∂ ∂ ∂⎛ ⎞= − + ⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
  (10) 

Plugging (10) in the governing equation in terms of vorticity 
2 0ϕω∇ =        (11) 

we get 
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The boundary conditions on the above equation are: 
( ), 0aψ θ =  (i.e. 0ru =  at surface)  (13) 

( ),
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∂  (i.e. 0uθ =  at surface)  (14) 

( ) 2 21, sin
2

Urψ θ θ∞ =  (i.e. uniform flow at ∞ )  (15) 
The last condition follows from the fact that the stream function 

for a uniform flow is 2 21 sin
2

Ur θ  in spherical polar coordinates. 



 
The upstream condition (15) suggests a separable solution of the 
form  

( ) 2sinf rψ θ=       (16) 
Substitution of this into the (12) gives 
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whose solution is  
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The upstream BC (15) requires that 0A =  and 2
UB =  

The surface BC (13) and (14) gives 
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The solution then reduces to  
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The velocity components can then be found as 
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With ru  and uθ  known, the pressure is found by integrating the 
momentum equation (1): 
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The shear stress distribution in the fluid is given by  
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The total drag is found by integrating pressure and shear around 
the sphere surface: 
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Fig. 2 Streamlines and velocity distributions in Stokes’ solution of 
creeping flow due to a moving sphere. Note the upper stream and 
downstream symmetry, a result of complete neglect of nonlinearity 
 
The proper drag coefficient should obviously be 
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but everyone uses the inertia type of definition 
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where 
2Re a Uρ
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Oseen’s Improvement: 
 
The Stokes solution for a sphere is not valid at large distance 
from the body, because the advective terms are not negligible 
compared to the viscous terms at these distances. Oseen 
provided a cure to Stokes’ solution by partly accounting for the 
inertia terms at large distances. He made the substitutions 

, ,u U u v v w w′ ′ ′= + = =      (28) 
where ( ), ,u v w′ ′ ′  are the Cartesian components of the 
perturbation velocity, small at large distances. Substituting these, 
the advective term of the x-momentum becomes: 
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Neglecting the quadratic terms, the equation of motion becomes 
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Where u′  represents ( ), ,u v w′ ′ ′ . This is called Oseen’s equation, 
and the approximation involved is called Oseen’s approximation. 
In essence, the Oseen approximation linearizes the advective 

term ⋅∇u u  by U x
∂
⋅
∂
u

, whereas the Stokes approximation drops 
advection altogether. Near the body both approximations have 
the same order of accuracy. However, the Oseen approximation 
is better in the far field where the velocity is only slightly 



different than U. The Oseen equations provide a lowest order 
solution that is uniformly valid everywhere in the flow field.  
 
The boundary conditions for a moving sphere are  

0u v w′ ′ ′= = =      at infinity  (31) 
, 0u U v w′ ′ ′= − = =     at surface  (32) 

The solution found by Oseen is 
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Fig. 3 Streamlines and velocity distributions in Oseen’s solution of 
creeping flow due to a moving sphere. Note the upper stream and 
downstream asymmetry, a result of partial accounting for advection in 
the far field 
 
The Oseen approximation predicts that the drag coefficient is 
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Fig. 4 Comparison of experiment, theory, and empirical formulas for 
drag coefficients of a sphere; empirical formulas can be found in 
White’s Viscous Flow 
 
 
 
Example: Terminal Velocity of a Particle from a Volcano 
 
A volcano has erupted, spewing stones, steam, and ash several 
thousand feet into the atmosphere. After some time, the particles 
begin to settle to the ground. Consider a nearly spherical ash 
particle of diameter 50 mm, falling in air whose temperature is  
-50°C and whose pressure is 55 kPa. The density of the particle 
is 1240 kg/m3. Estimate the terminal velocity of this particle at 
this altitude. 



 
Fig. 5 Small ash particles spewed from a volcano eruption settle slowly 
to the ground; the creeping flow approximation is reasonable for this 
type of flow field 
 
Assumptions: 
1 The Reynolds number is very small (we will need to verify 
this assumption after we obtain the solution). 
2 The particle is spherical. 



 
Fig.6 A particle falling at a steady terminal velocity has no acceleration; 
therefore, its weight is balanced by aerodynamic drag and the buoyancy 
force acting on the particle 

 
Once the falling particle has reached its terminal velocity, the 
net downward force (weight) balances the net upward force 
(aerodynamic drag + buoyancy), as illustrated in the above 
figure. 
 
Downward force 

3

6down particle
DF W gπ ρ= =        (35) 

Upward force 
3

3
6up D buoyancy air

DF F F VD gπµ π ρ= + = +     (36) 
At given temperature and pressure, the air density can be 
calculated using the ideal gas law: 

30.8588air
P kg m

RT
ρ = =          

Since viscosity is a very weak function of pressure, we use the 
value at -50°C and atmospheric pressure, 51.474 10 kg m sµ −= × ⋅  
 



We equate (35) and (36) and solve for terminal velocity: 

( )
2

0.115
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DV g m sρ ρ
µ

= − =     (36) 

Finally we verify that the Reynolds number is small enough that 
creeping flow is an appropriate approximation: 

Re 0.335 1airVDρ
µ

= = <         

Thus the Reynolds number is less than 1, but certainly not much 
less than 1. 
 


