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Chapter 6 Differential Analysis of Fluid Flow  
 
Fluid Element Kinematics 
 
Fluid element motion consists of translation, linear 
deformation, rotation, and angular deformation. 

 
Types of motion and deformation for a fluid element. 

 
Linear Motion and Deformation:  

 
Translation of a fluid element 

 
Linear deformation of a fluid element 
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Change inδ∀ : 

( )u x y z t
x

δ δ δ δ δ∂⎛ ⎞∀ = ⎜ ⎟∂⎝ ⎠  

the rate at which the volume δ∀  is changing per unit 
volume due to the gradient ∂u/∂x is 

( ) ( )
0

1 lim
t

d u x t u
dt t xδ

δ δ
δ δ→

∀ ∂ ∂⎡ ⎤ ∂
= =⎢ ⎥∀ ∂⎣ ⎦  

If velocity gradients ∂v/∂y and ∂w/∂z are also present, then 
using a similar analysis it follows that, in the general case, 

( )1 d u v w
dt x y z
δ

δ
∀ ∂ ∂ ∂

= + + = ∇ ⋅
∀ ∂ ∂ ∂

V  

This rate of change of the volume per unit volume is called 
the volumetric dilatation rate. 
 
Angular Motion and Deformation 
For simplicity we will consider motion in the x–y plane, 
but the results can be readily extended to the more general 
case. 

 
Angular motion and deformation of a fluid element 

 
The angular velocity of line OA, ωOA, is 
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0
limOA t tδ

δαω
δ→

=  
For small angles 

( )tan
v x x t v t

x x
δ δ

δα δα δ
δ

∂ ∂ ∂
≈ = =

∂  
so that 

( )
0

limOA t

v x t v
t xδ

δ
ω

δ→

∂ ∂⎡ ⎤ ∂
= =⎢ ⎥ ∂⎣ ⎦  

Note that if ∂v/∂x is positive, ωOA will be counterclockwise. 
 
Similarly, the angular velocity of the line OB is 

0
limOB t

u
t yδ

δβω
δ→

∂
= =

∂  

In this instance if ∂u/∂y is positive, ωOB will be clockwise. 
 
The rotation, ωz, of the element about the z axis is defined 
as the average of the angular velocities ωOA and ωOB of the 
two mutually perpendicular lines OA and OB. Thus, if 
counterclockwise rotation is considered to be positive, it 
follows that 

1
2z

v u
x y

ω
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠  

Rotation of the field element about the other two coordinate 
axes can be obtained in a similar manner: 

1
2x

w v
y z

ω
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠  
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1
2y

u w
z x

ω ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠  

The three components, ωx,ωy, and ωz can be combined to 
give the rotation vector, ω, in the form: 

1 1
2 2x y z curlω ω ω= + + = = ∇×ω i j k V V  

since 

1 1
2 2 x y z

u v w

∂ ∂ ∂
∇× =

∂ ∂ ∂

i j k

V

 

1 1 1
2 2 2

w v u w v u
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
i j k  

The vorticity, ζ, is defined as a vector that is twice the 
rotation vector; that is,  

2ς = = ∇×ω V  
The use of the vorticity to describe the rotational 
characteristics of the fluid simply eliminates the (1/2) factor 
associated with the rotation vector. If 0∇× =V , the flow 
is called irrotational. 
 
In addition to the rotation associated with the derivatives 
∂u/∂y and ∂v/∂x, these derivatives can cause the fluid 
element to undergo an angular deformation, which results 
in a change in shape of the element. The change in the 
original right angle formed by the lines OA and OB is 
termed the shearing strain, δγ, 
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δγ δα δβ= +  
The rate of change of δγ is called the rate of shearing strain 
or the rate of angular deformation: 

( ) ( )
0 0

lim lim
t t

v x t u y t v u
t t x yδ δ

δ δδγγ
δ δ→ →

∂ ∂ + ∂ ∂⎡ ⎤ ∂ ∂
= = = +⎢ ⎥ ∂ ∂⎣ ⎦  

The rate of angular deformation is related to a 
corresponding shearing stress which causes the fluid 
element to change in shape. 
 
The Continuity Equation in Differential Form 
 
The governing equations can be expressed in both integral 
and differential form.  Integral form is useful for large-scale 
control volume analysis, whereas the differential form is 
useful for relatively small-scale point analysis. 
 
Application of RTT to a fixed elemental control volume 
yields the differential form of the governing equations.  For 
example for conservation of mass 
 

   ∑ ∫
∂
ρ∂

−=⋅ρ
CS CV

Vd
t

AV  

 
net outflow of mass        = rate of decrease 
across CS     of mass within CV 
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( ) dydzdxu
x

u ⎥⎦
⎤

⎢⎣
⎡ ρ

∂
∂

+ρ  

outlet mass flux 

Consider a cubical element oriented so that its sides are ⎢⎢to  
the (x,y,z) axes 

 
 
 
 
 
Taylor series expansion 

retaining only first order term 
 
We assume that the element is infinitesimally small such 
that we can assume that the flow is approximately one 
dimensional through each face. 
 
The mass flux terms occur on all six faces, three inlets, and 
three outlets.  Consider the mass flux on the x faces 
 

( )flux outflux influx
x ρu ρu dx dydz ρudydz

x
∂⎡ ⎤= + −⎢ ⎥∂⎣ ⎦  

 = dxdydz)u(
x
ρ

∂
∂  

      V 
 
Similarly for the y and z faces 

dxdydz)w(
z

z

dxdydz)v(
y

y

flux

flux

ρ
∂
∂

=

ρ
∂
∂

=
 

 

inlet mass flux 
ρudydz 
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The total net mass outflux must balance the rate of decrease 
of mass within the CV which is 

    dxdydz
t∂
ρ∂

−  

 
Combining the above expressions yields the desired result 

0)V(
t

0)w(
z

)v(
y

)u(
xt

0dxdydz)w(
z

)v(
y

)u(
xt

=ρ⋅∇+
∂
ρ∂

=ρ
∂
∂

+ρ
∂
∂

+ρ
∂
∂

+
∂
ρ∂

=⎥
⎦

⎤
⎢
⎣

⎡
ρ

∂
∂

+ρ
∂
∂

+ρ
∂
∂

+
∂
ρ∂

  

ρ∇⋅+⋅∇ρ VV  
 

0V
Dt
D

=⋅∇ρ+
ρ    ∇⋅+

∂
∂

= V
tDt

D  

 
Nonlinear 1st order PDE; ( unless ρ = constant, then linear) 
Relates V to satisfy kinematic condition of mass 
conservation 
 
Simplifications: 
1. Steady flow:  0)V( =ρ⋅∇  
 
2. ρ = constant:  0V =⋅∇  
 

dV 

per unit V 
differential form of 
continuity equations 
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i.e.,   0
z
w

y
v

x
u

=
∂
∂

+
∂
∂

+
∂
∂  3D 

 

  0
y
v

x
u

=
∂
∂

+
∂
∂   2D 

 
The continuity equation in Cylindrical Polar Coordinates 

 
The velocity at some arbitrary point P can be expressed as 

r r z zv v vθ θ= + +V e e e  
The continuity equation: 

( ) ( ) ( )1 1 0r zr v v v
t r r r z

θρ ρ ρρ
θ

∂ ∂ ∂∂
+ + + =

∂ ∂ ∂ ∂  
For steady, compressible flow 

( ) ( ) ( )1 1 0r zr v v v
r r r z

θρ ρ ρ
θ

∂ ∂ ∂
+ + =

∂ ∂ ∂  
For incompressible fluids (for steady or unsteady flow) 

( )1 1 0r zrv v v
r r r z

θ

θ
∂ ∂ ∂

+ + =
∂ ∂ ∂  
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The Stream Function 
Steady, incompressible, plane, two-dimensional flow 
represents one of the simplest types of flow of practical 
importance. By plane, two-dimensional flow we mean that 
there are only two velocity components, such as u and v, 
when the flow is considered to be in the x–y plane. For this 
flow the continuity equation reduces to 

0
y
v

x
u

=
∂
∂

+
∂
∂  

 
We still have two variables, u and v, to deal with, but they 
must be related in a special way as indicated. This equation 
suggests that if we define a function ψ(x, y), called the 
stream function, which relates the velocities as 

,u v
y x
ψ ψ∂ ∂

= = −
∂ ∂  

then the continuity equation is identically satisfied: 
2 2

0
x y y x x y x y

ψ ψ ψ ψ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − = − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠  
 
 

 
Velocity and velocity components along a streamline 
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Another particular advantage of using the stream function 
is related to the fact that lines along which ψ is constant are 
streamlines.The change in the value of ψ as we move from 
one point (x, y) to a nearby point (x + dx, y + dy) along a 
line of constant ψ is given by the relationship: 

0d dx dy vdx udy
x y
ψ ψψ ∂ ∂

= + = − + =
∂ ∂  

and, therefore, along a line of constant ψ 
dy v
dx u

=  

 
The flow between two streamlines 

The actual numerical value associated with a particular 
streamline is not of particular significance, but the change 
in the value of ψ is related to the volume rate of flow. Let 
dq represent the volume rate of flow (per unit width 
perpendicular to the x–y plane) passing between the two 
streamlines. 

dq udy vdx dx dy d
x y
ψ ψ ψ∂ ∂

= − = + =
∂ ∂  

Thus, the volume rate of flow, q, between two streamlines 
such as ψ1 and ψ2, can be determined by integrating to 
yield: 
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2

1
2 1q d

ψ

ψ
ψ ψ ψ= = −∫  

 
In cylindrical coordinates the continuity equation for 
incompressible, plane, two-dimensional flow reduces to 

( )1 1 0rrv v
r r r

θ

θ
∂ ∂

+ =
∂ ∂  

 
and the velocity components, vr and vθ, can be related to the 
stream function, ψ(r, θ), through the equations 

1 ,rv v
r rθ

ψ ψ
θ

∂ ∂
= = −

∂ ∂  
 
Navier-Stokes Equations 
 
Differential form of momentum equation can be derived by 
applying control volume form to elemental control volume 
 
The differential equation of linear momentum:  elemental 
fluid volume approach 
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CV CS

dF Vd V V dA
dt

ρ ρ= ∀+ ⋅∑ ∫ ∫  1-D flow approximation 

  = ( ) ( )i ii iout in
m V m V−∑ ∑  

where dydzuAVm ρ=ρ=  x-face 
   mass flux 

  = ( )dxdydzV
dt
d

ρ  

 

 =  ( ) ( ) ( ) dxdydzVw
z

Vv
y

Vu
x ⎥

⎦

⎤
⎢
⎣

⎡
ρ

∂
∂

+ρ
∂
∂

+ρ
∂
∂  

     x-face  y-face  z-face 
combining and making use of the continuity equation yields 

∑ ρ= dxdydz
Dt

VDF   
DV V V V
Dt t

∂
= + ⋅∇
∂  

    where ∑ ∑ ∑+= surfacebody FFF  
Body forces are due to external fields such as gravity or 
magnetics.  Here we only consider a gravitational field; that 
is, 
   
 ∑ ρ== dxdydzgFdF gravbody  
 and k̂gg −=  for  g↓  z↑ 
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 i.e., k̂gf body ρ−=  
 
Surface forces are due to the stresses that act on the sides of 
the control surfaces 
        symmetric (σij = σji) 
  σij = - pδij + τij    2nd order tensor 
 
normal pressure  viscous stress 
 
    = -p+τxx     τxy     τxz 

        τyx  -p+τyy    τyz 

        τzx     τzy  -p+τzz 
 
 
 
As shown before for p alone it is not the stresses 
themselves that cause a net force but their gradients. 
 

   dFx,surf  =  ( ) ( ) ( ) dxdydz
zyx xzxyxx ⎥

⎦

⎤
⎢
⎣

⎡
σ

∂
∂

+σ
∂
∂

+σ
∂
∂  

 

  =  ( ) ( ) ( ) dxdydz
zyxx

p
xzxyxx ⎥
⎦

⎤
⎢
⎣

⎡
τ

∂
∂

+τ
∂
∂

+τ
∂
∂

+
∂
∂

−  

This can be put in a more compact form by defining 
 k̂ĵî xzxyxxx τ+τ+τ=τ   vector stress on x-face 
and noting that 

 dFx,surf = dxdydz
x
p

x ⎥⎦
⎤

⎢⎣
⎡ τ⋅∇+

∂
∂

−  

δij = 1 i = j 
δij = 0 i ≠ j 
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 fx,surf  =  xx
p

τ⋅∇+
∂
∂

−  per unit volume 

 
similarly for y and z 

 fy,surf  =  yy
p

τ⋅∇+
∂
∂

−  k̂ĵî yzyyyxy τ+τ+τ=τ   

 

 fz,surf  =  zz
p

τ⋅∇+
∂
∂

−  k̂ĵî zzzyzxz τ+τ+τ=τ  

 
finally if we define 

k̂ĵî zyxij τ+τ+τ=τ   then 
 

ijijsurf pf σ⋅∇=τ⋅∇+−∇=   ijijij p τ+δ−=σ  
 
Putting together the above results 

 
Dt

VDfff surfbody ρ=+∑ =  

 k̂gf body ρ−=  
 ijsurface pf τ⋅∇+−∇=  

 
DV Va V V
Dt t

∂
= = + ⋅∇

∂  

 ˆ
ija gk pρ ρ τ= − −∇ +∇⋅  

inertia   body   
force   force surface  surface force 
    due to force due  due to viscous 
    gravity to p   shear and normal  

stresses 
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For Newtonian fluid the shear stress is proportional to the 
rate of strain, which for incompressible flow can be written 
 
 ijij µε=τ     µ = coefficient of viscosity 
 
 
 εij =  rate of strain tensor 
 

 =        
x
u
∂
∂   ⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂

y
u

x
v  ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

z
u

x
w  

  ⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂

x
v

y
u        

y
v
∂
∂   ⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂

z
v

y
w  

  ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

x
w

z
u  ⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂

y
w

z
v        

z
w
∂
∂  

 
 
 

  
dy
du

µ=τ   1-D flow 

     rate of strain 
( )ijpk̂ga µε⋅∇+∇−ρ−=ρ  

 

    ( ) V
x

2
ij

i
∇µ=ε

∂
∂

µ  

 
Vpk̂ga 2∇µ+∇−ρ−=ρ  
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( ) Vzpa 2∇µ+γ+−∇=ρ    Navier-Stokes Equation 
0V =⋅∇       Continuity Equation 

 
Four equations in four unknowns:  V and p 
Difficult to solve since 2nd order nonlinear PDE 
 

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

+
∂
∂

+
∂
∂

µ+
∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ρ 2

2

2

2

2

2

z
u

y
u

x
u

x
p

z
uw

y
uv

x
uu

t
u  

 

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

+
∂
∂

+
∂
∂

µ+
∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ρ 2

2

2

2

2

2

z
v

y
v

x
v

y
p

z
vw

y
vv

x
vu

t
v  

 

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

+
∂
∂

+
∂
∂

µ+
∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ρ 2

2

2

2

2

2

z
w

y
w

x
w

z
p

z
ww

y
wv

x
wu

t
w

 

 0
z
w

y
v

x
u

=
∂
∂

+
∂
∂

+
∂
∂  

 
Navier-Stokes equations can also be written in other 
coordinate systems such as cylindrical, spherical, etc. 
 
There are about 80 exact solutions for simple geometries.  
For practical geometries, the equations are reduced to 
algebraic form using finite differences and solved using 
computers. 
 
Exact solution for laminar flow in a pipe  
(neglect g for now)  

x: 

y: 

z: 
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use cylindrical coordinates: vx = u 
      vr = v 
 u = u(r)   only    vθ = w = 0 
 
 

Continuity: ( ) ⇒=
∂
∂ 0rv
r

 rv = constant = c 

      v = c/r 
      v(r = 0) = 0 ⇒ c = 0 
      i.e., v = 0 
 
 
Momentum: 
  

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

+
∂
∂

+
θ∂
∂

+
∂
∂

µ+
∂
∂

−=ρ 2

2

2

2

22

2

r
u

r
u

r
1u

r
1

x
u

x
p

Dt
Du  

 
2

2

u u u w u p 1 u uu v
t z r r x r r r

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ρ + + + = − +µ +⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂θ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦
 

 

λ=
∂
∂

µ
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

x
p1

r
ur

rr
1  

 

Ar
2r

ur 2 +
λ

=
∂
∂  

 

( ) BrlnAr
4

ru 2 ++
λ

=  
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u(r = 0) ≠ ∞ ⇒ A = 0 

u(r = ro) = 0 ⇒ ( ) ( )2
o

2 rr
4

ru −
λ

=  

 

i.e.  ( ) ( )2
o

2 rr
x
p

4
1ru −
∂
∂

µ
=         parabolic velocity profile 

 
Differential Analysis of Fluid Flow 
 
We now discuss a couple of exact solutions to the Navier-
Stokes equations.  Although all known exact solutions 
(about 80) are for highly simplified geometries and flow 
conditions, they are very valuable as an aid to our 
understanding of the character of the NS equations and 
their solutions.  Actually the examples to be discussed are 
for internal flow (Chapter 8) and open channel flow 
(Chapter 10), but they serve to underscore and display 
viscous flow.  Finally, the derivations to follow utilize 
differential analysis.  See the text for derivations using CV 
analysis. 
 
Couette Flow  

boundary conditions 
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First, consider flow due to the relative motion of two 
parallel plates 
 

Continuity  0
x
u
=

∂
∂  

 

Momentum  2

2

dy
ud0 µ=  

or by CV continuity and momentum equations: 
yuyu 21 ∆ρ=∆ρ  

u1 = u2 
 

( )∑ =−ρ=⋅ρ∑ = 0uuQAdVuF 12x  

xdy
dy
dxyx

dx
dppyp ∆⎟

⎠

⎞
⎜
⎝

⎛ τ
+τ+∆τ−∆⎟

⎠
⎞

⎜
⎝
⎛ ∆+−∆= = 0 

 

0
dy
d

=
τ      

i.e. 0
dy
du

dy
d

=⎟
⎠

⎞
⎜
⎝

⎛
µ     

 0
dy

ud
2

2
=µ      

 
from momentum equation 

C
dy
du

=µ       

u = u(y) 
v = o 

0
y
p

x
p

=
∂
∂

=
∂
∂  
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DyCu +
µ

=      

u(0) = 0 ⇒ D = 0        

u(t) = U ⇒ C = 
t
U

µ    

y
t
Uu =        

=
µ

=µ=τ
t
U

dy
du constant 

Generalization for inclined flow with a constant pressure 
gradient 
 
 
 
 
 
 
 
 

Continutity  0
x
u
=

∂
∂  

 

Momentum  ( ) 2

2

dy
udzp

x
0 µ+γ+

∂
∂

−=  

 

i.e.,  
dx
dh

dy
ud
2

2
γ=µ   h = p/γ +z = constant 

u = u(y) 
v = o 

0
y
p
=

∂
∂  
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      plates horizontal 0
dx
dz

=  

      plates vertical 
dx
dz =-1 

which can be integrated twice to yield 
 

  Ay
dx
dh

dy
du

+γ=µ  

 

  BAy
2
y

dx
dhu

2
++γ=µ  

now apply boundary conditions to determine A and B 
  u(y = 0) = 0   ⇒   B = 0 
  u(y = t) = U 
 

  
2
t

dx
dh

t
UAAt

2
t

dx
dhU

2
γ−

µ
=⇒+γ=µ  

 

⎥⎦
⎤

⎢⎣
⎡ γ−
µ

µ
+

µ
γ

=
2
t

dx
dh

t
U1

2
y

dx
dh)y(u

2
 

= ( ) y
t
Uyty

dx
dh

2
2 +−

µ
γ

−  

 
This equation can be put in non-dimensional form: 

t
y

t
y

t
y1

dx
dh

U2
t

U
u 2

+⎟
⎠
⎞

⎜
⎝
⎛ −

µ
γ

−=  

 
define:  P = non-dimensional pressure gradient 
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  = 
dx
dh

U2
t 2

µ
γ

−     zph +
γ

=  

  Y = y/t    ⎥⎦

⎤
⎢⎣

⎡
+

γµ
γ

−=
dx
dz

dx
dp1

U2
z2

 

 ⇒ Y)Y1(YP
U
u

+−⋅=  

parabolic velocity profile 
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t
y

t
Py

t
Py

U
u

2

2
+−=  

 

[ ]

t

dyU

t
qu

udyq

t

0

t

0

∫
==

∫=

 

 

∫ ⎥⎦
⎤

⎢⎣
⎡ +−=

t

0

2
2 dy

t
yy

t
Py

t
P

U
ut  

 =
2
t

3
Pt

2
Pt

+−  

 

2
U

dx
dh

12
tu

2
1

6
P

U
u 2

+⎟
⎠
⎞

⎜
⎝
⎛ γ−

µ
=⇒+=  

 
 

For laminar flow 1000tu
<

ν
  Recrit ∼ 1000 

 
 
The maximum velocity occurs at the value of y for which: 

 0
dy
du

=   
t
1y

t
P2

t
P0

U
u

dy
d

2 +−==⎟
⎠
⎞

⎜
⎝
⎛  
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  ( )
P2
t

2
t1P

P2
ty +=+=⇒  @ umax 

 

  ( )
P4

U
2
U

4
UPyuu maxmax ++==∴  

 

note:   if U = 0: 
3
2

4
P

6
P

u
u

max
==  

 
The shape of the velocity profile u(y) depends on P: 

1. If P > 0, i.e., 0
dx
dh

<  the pressure decreases in the  

direction of flow (favorable pressure gradient) and the 
velocity is positive over the entire width 

  

θγ−=⎟
⎠

⎞
⎜
⎝

⎛
+

γ
γ=γ sin

dx
dpzp

dx
d

dx
dh  

 

a) 0
dx
dp

<  

 

b) θγ< sin
dx
dp  

 

1. If P < 0, i.e., 0
dx
dh

>  the pressure increases in the 

direction of flow (adverse pressure gradient) and the 
velocity over a portion of the width can become 
negative (backflow) near the stationary wall.  In this 

for U = 0, y = t/2
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case the dragging action of the faster layers exerted on 
the fluid particles near the stationary wall is insufficient 
to over come the influence of the adverse pressure 
gradient 

 

0sin
dx
dp

>θγ−  

 

θγ> sin
dx
dp   or  

dx
dpsin <θγ  

2. If P = 0, i.e., 0
dx
dh

=  the velocity profile is linear 

y
t
Uu =  

 

a) 0
dx
dp

=  and θ = 0 

b) θγ= sin
dx
dp  

 

For U = 0 the form ( ) YY1PY
U
u

+−=  is not appropriate 

  
u = UPY(1-Y)+UY 

  

    = ( ) UYY1Y
dx
dh

2
t2

+−
µ

γ
−  

Now let U = 0: ( )Y1Y
dx
dh

2
tu

2
−

µ
γ

−=   

Note:  we derived 
this special case 
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3. Shear stress distribution 
 
Non-dimensional velocity distribution 

( )* 1uu P Y Y Y
U

= = ⋅ − +  

where * uu
U

≡  is the non-dimensional velocity, 

 
2

2
t dhP
U dx

γ
µ

≡ − is the non-dimensional pressure gradient 

 
yY
t

≡ is the non-dimensional coordinate. 
Shear stress  

du
dy

τ µ=  

In order to see the effect of pressure gradient on shear 
stress using the non-dimensional velocity distribution, we 
define the non-dimensional shear stress: 

*

21
2

U

ττ
ρ

=  

Then  

    
( )
( )

*
*

2

1 2
1
2

Ud u U du
td y t Ut dYU

µτ µ
ρρ

= =  

    ( )2 2 1PY P
Ut
µ

ρ
= − + +  

    ( )2 2 1PY P
Ut
µ

ρ
= − + +  

    ( )2 1A PY P= − + +  

where 2 0A
Ut
µ

ρ
≡ >  is a positive constant.  

So the shear stress always varies linearly with Y across any 
section. 
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At the lower wall ( )0Y = : 

    ( )* 1lw A Pτ = +  

At the upper wall ( )1Y = : 

    ( )* 1uw A Pτ = −  
 
For favorable pressure gradient, the lower wall shear stress 
is always positive: 
 1. For small favorable pressure gradient ( )0 1P< < : 
    * 0lwτ >  and * 0uwτ >  
 2. For large favorable pressure gradient ( )1P > : 
    * 0lwτ >  and * 0uwτ <  
 
 
 
 
 
 
 
 
 
 
      ( )0 1P< <         ( )1P >  
 
 
For adverse pressure gradient, the upper wall shear stress is 
always positive: 
 1. For small adverse pressure gradient ( )1 0P− < < : 
    * 0lwτ >  and * 0uwτ >  
 2. For large adverse pressure gradient ( )1P < − : 
    * 0lwτ <  and * 0uwτ >  

τ τ
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      ( )1 0P− < <         ( )1P < −  
 
For 0U = , i.e., channel flow, the above non-dimensional 
form of velocity profile is not appropriate. Let’s use 
dimensional form: 

    ( ) ( )
2

1
2 2
t dh dhu Y Y y t y

dx dx
γ γ
µ µ

= − − = − −  

Thus the fluid always flows in the direction of decreasing 
piezometric pressure or piezometric head because 

0, 0
2

yγ
µ
> >  and 0t y− > . So if 

dh
dx  is negative, u is 

positive; if 
dh
dx  is positive, u is negative. 

 
Shear stress: 

    
1

2 2
du dh t y
dy dx

γτ µ ⎛ ⎞= = − −⎜ ⎟
⎝ ⎠

 

 

Since 1 0
2

t y⎛ ⎞− >⎜ ⎟
⎝ ⎠

, the sign of shear stress τ  is always 

opposite to the sign of piezometric pressure gradient dh
dx , 

and the magnitude of τ  is always maximum at both walls 
and zero at centerline of the channel. 

τ τ
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 For favorable pressure gradient, 0dh
dx

< , 0τ >  

 For adverse pressure gradient, 0dh
dx

> , 0τ <  
 
 
 
 
 
 
 
 
 
 
 
 

   0dh
dx

<       0dh
dx

>  

 
Flow down an inclined plane 
 

uniform flow ⇒ velocity and depth do not 
       change in x-direction 

 

Continuity 0
dx
du

=  

ττ
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x-momentum ( ) 2

2

dy
udzp

x
0 µ+γ+

∂
∂

−=  

y-momentum ( )⇒γ+
∂
∂

−= zp
y

0 hydrostatic pressure variation 

         0
dx
dp

=⇒  

 

   θγ−=µ sin
dy

ud
2

2
 

 

   cysin
dy
du

+θ
µ
γ

−=  

 

   DCy
2
ysinu

2
++θ

µ
γ

−=  

 

dsinccdsin0
dy
du

dy

θ
µ
γ

+=⇒+θ
µ
γ

−==
=

 

 
u(0) = 0  ⇒ D = 0 

 

   dysin
2
ysinu

2
θ

µ
γ

+θ
µ
γ

−=  

 

      = ( )yd2ysin
2

−θ
µ
γ  
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     u(y) = ( )yd2y
2
sing

−
ν
θ  

 

 
d

0

3
2

d

0 3
ydysin

2
udyq ⎥

⎦

⎤
⎢
⎣

⎡
−θ

µ
γ

=∫=    

 

    = θ
µ
γ sind

3
1 3  

 

θ
ν

=θ
µ
γ

== sin
3

gdsind
3
1

d
qV

2
2

avg  

 
 
in terms of the slope So = tan θ ∼ sin θ 
 

  
ν

=
3

SgdV o
2

 

 
Exp. show Recrit ∼ 500, i.e., for Re > 500 the flow will 
become turbulent 
 

  θγ−=
∂
∂ cos
y
p       

ν
=

dVRecrit  ∼ 500 

 
  Cycosp +θγ−=  
 
  ( ) Cdcospdp o +θγ−==  
 

discharge per 
unit width 
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i.e.,  ( ) opydcosp +−θγ=  
 
*  p(d) > po 
 
*  if θ = 0  p = γ(d − y) + po      

entire weight of fluid imposed 
 
    if θ = π/2 p = po 
   no pressure change through the fluid  
 


