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Chapter 5 Finite Control Volume Analysis 
 

5.1 Continuity Equation 
 

RTT can be used to obtain an integral relationship expressing 
conservation of mass by defining the extensive property B = M 

such that  = 1. 
 

  B = M = mass 

   = dB/dM = 1 

 
General Form of Continuity Equation 

 

  
CV CS

dAVVd
dt

d
0

dt

dM
 

or 

  
CVCS

Vd
dt

d
dAV  

 

net rate of outflow   rate of decrease of 
of mass across CS  mass within CV 

 

Simplifications: 

1. Steady flow:  0Vd
dt

d

CV

   

2. V = constant over discrete dA (flow sections): 

 

  
CS CS

AVdAV  
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3. Incompressible fluid ( = constant) 

C S C V

d
V dA dV

dt
       conservation of volume 

 

4. Steady One-Dimensional Flow in a Conduit: 

 
CS

0AV  

 

1V1A1 + 2V2A2 = 0 

 

for  = constant Q1 = Q2 

 
Some useful definitions: 

 

Mass flux    
A

dAVm  

 

Volume flux   
A

dAVQ  

 

Average Velocity A/QV   

 

Average Density   dA
A

1
 

 

Note:  m Q   unless  = constant 
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Example 

 

*Steady flow 

*V1,2,3 = 50 fps 

*At , V varies linearly   
  from zero at wall to  

  Vmax at pipe center 

*find 4m , Q4, Vmax 

0  *water, w = 1.94 slug/ft
3 

  
CVCS

Vd
dt

d
0dAV  

        

i.e.,  -1V1A1 - 2V2A2 + 3V3A3 +  
4A

44 dAV = 0   

 = const. = 1.94 lb-s
2
 /ft

4
 = 1.94 slug/ft

3 

 

 444 dAVm = V(A1 + A2 – A3)      V1=V2=V3=V=50f/s 

    =  222
5.121

4
50

144

94.1



   

 = 1.45 slugs/s 

 
 

 
 

 

 
 

4m  
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Q4 = 75.m 4   ft
3
/s 

 

     = 
4A

44 dAV  

velocity profile 

Q4   =   
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r
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5.2 Momentum Equation 
 
Derivation of the Momentum Equation 

 
Newton’s second law of motion for a system is 

  

time rate of change 
of the momentum 

of the system 

= sum of external 
forces acting on 

the system 
 

Since momentum is mass times velocity, the momentum of a 

small particle of mass     is      and the momentum of the 

entire system is ∫     
   

.  Thus, 

 
 

  
∫      ∑    
   

 

 
Recall RTT: 

 
     
  

 
 

  
∫     
  

 ∫        
  

 

 
 

With         and   
     

  
  , 

 

 
 

  
∫      

 

  
∫     
  

 ∫        
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Thus, the Newton’s second law becomes 
 

 

  
∫     
  ⏟        

              
            

         

 ∫        
  ⏟        

                
           
              

 ∑   ⏟    
            
            
         

 

 

where, 

 

   is fluid velocity referenced to an inertial frame (non-

accelerating) 

 

    is the velocity of CS referenced to the inertial frame 

 

         is the relative velocity referenced to CV 

 

 ∑    ∑   ∑   is vector sum of all forces acting on 

the CV  

 
    is body force such as gravity that acts on the entire 

mass/volume of CV 

 
    is surface force such as normal (pressure and 

viscous) and tangential (viscous) stresses acting on the 

CS 
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Note that, when CS cuts through solids,    may also include 

reaction force,      

 

(e.g., the reaction force required to hold nozzle or bend when CS 
cuts through the bolts that are holding the nozzle/bend in place) 

 
 

 

 

 
∑                 
 

∑          

 

     ̂     ̂ = resultant 

force on fluid in CV due to    

and   , i.e. reaction force on 
fluid 

Free body diagram  
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Important Features (to be remembered) 

 
1) Vector equation to get component in any direction must use 

dot product 
 

 x equation 

    
CS

R

CV

x dAVuVud
dt

d
F  

 y equation      

   
CS

R

CV

y dAVvVvd
dt

d
F      

 

 z equation 

    
CS

R

CV

z dAVwVwd
dt

d
F  

 

2) Carefully define control volume and be sure to include all 

external body and surface faces acting on it. 
For example, 

 
 

 

 
 

 
 

 
 

 

 

(Rx,Ry) = reaction 
force on fluid 

(Rx,Ry) = reaction 

force on nozzle  

Carefully define coordinate 

system with forces positive in 

positive direction of 
coordinate axes 
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3) Velocity V  and Vs must be referenced to a non-accelerating 
inertial reference frame.  Sometimes it is advantageous to use 

a moving (at constant velocity) reference frame: relative 
inertial coordinate.  Note VR = V – Vs is always relative to 

CS. 

 
 

4) Steady vs. Unsteady Flow 
 

Steady flow   
CV

0VdV
dt

d
 

 

5) Uniform vs. Nonuniform Flow 
 

 
CS

R dAVV  = change in flow of momentum across CS 

      = VVRA  uniform flow across A 

6) Fpres =   dAnp     
V S

dsnfVfd  

f = constant, f = 0 

 = 0  for p = constant and for a closed surface 

 
 i.e., always use gage pressure 

 

7)  Pressure condition at a jet exit 
   

at an exit into the atmosphere jet 
pressure must be pa 
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Applications of the Momentum Equation 
Initial Setup and Signs 

1. Jet deflected by a plate or a vane 
2. Flow through a nozzle 

3. Forces on bends 

4. Problems involving non-uniform velocity distribution 
5. Motion of a rocket 

6. Force on rectangular sluice gate 
7. Water hammer 

8. Steady and unsteady developing and fully developed pipe 

flow 
9. Empting and filling tanks 

10. Forces on transitions 
11. Hydraulic jump 

12. Boundary layer and bluff body drag 

13. Rocket or jet propulsion 
14. Propeller 
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1.  Jet deflected by a plate or vane 

 
Consider a jet of water turned through a horizontal angle 

 

x-equation:    
CS

xx dAVuVud
dt

d
FF  

        steady flow 
 

        = )AV(V)AV(V 22x211x1   

 

continuity equation: A1V1 = A2V2 = Q 

 

Fx = Q(V2x – V1x) 

 

y-equation:   
CS

yy AVvFF  

   Fy = V1y(– A1V1) + V2y(– A2V2) 

        = Q(V2y – V1y) 

      
     for above geometry only 

where:  V1x = V1    V2x = -V2cos   V2y = -V2sin  V1y = 0 
note: Fx and Fy are force on fluid 

  - Fx and -Fy are force on vane due to fluid 

 
CS

x AVuF

CV and CS are 

for jet so that Fx 
and Fy are vane 

reactions forces 

on fluid 

for A1 = A2 

      V1 = V2 
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If the vane is moving with velocity Vv, then it is convenient to 
choose CV moving with the vane 

 
i.e.,  VR = V -  Vv  and V used for B also moving with vane 

 

x-equation:  
CS

Rx dAVuF  

 

  Fx = V1x[-(V – Vv)1A1] + V2x[(V – Vv)2A2] 
 

 

Continuity: 0 =   dAV R  

 i.e., (V-Vv)1A1 = (V-Vv)2A2 = (V-Vv)A 

         Qrel 

 

 

Fx = (V-Vv)A[V2x – V1x] 

Qrel  
 

on fluid  V2x = (V – Vv)2x 

   V1x = (V – Vv)1x  
 

Power = -FxVv   i.e., = 0 for Vv = 0 
 

Fy = Qrel(V2y – V1y) 
 

 

 
 

For coordinate system 

moving with vane 
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2.  Flow through a nozzle 

 
Consider a nozzle at the end of a pipe (or hose).  What force is 

required to hold the nozzle in place? 
 

 

 
 

Assume either the pipe velocity or pressure is known.  Then, the 
unknown (velocity or pressure) and the exit velocity V2 can be 

obtained from combined use of the continuity and Bernoulli 

equations. 
 

Bernoulli: 
2

222

2

111 V
2

1
zpV

2

1
zp        z1=z2 

   
2

2

2

11 V
2

1
V

2

1
p   

 
Continuity: A1V1 = A2V2 = Q 

   1

2

1

2

1

2 V
d

D
V

A

A
V 








  

   0
d

D
1V

2

1
p

4

2

11 





















  

Say p1 known:  

 

2/1

4

1

1

d
D1

p2
V
































  

To obtain the reaction force Rx apply momentum equation in x-

direction 

CV = nozzle  
         and fluid 

 (Rx, Ry) = 

force required 
to hold nozzle 

in place 
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CSCV

x dAVuVdu
dt

d
F  

  = 
CS

AVu   

 

  Rx + p1A1 – p2A2   = V1(-V1A1) + V2(V2A2) 

    = Q(V2 - V1) 

     Rx = Q(V2 - V1) - p1A1 

 
To obtain the reaction force Ry apply momentum equation in y-

direction 

 

   
CS

y 0AVvF  since no flow in y-direction 

 Ry – Wf  WN = 0 i.e., Ry = Wf + WN 

 

Numerical Example:  Oil with S = .85 flows in pipe under 
pressure of 100 psi.  Pipe diameter is 3” and nozzle tip diameter 

is 1” 
   

V1 = 14.59 ft/s 

  V2 = 131.3 ft/s 
 

  Rx = 141.48 – 706.86 = 569 lbf 
  Rz = 10 lbf 

 
This is force on nozzle  

 

 
 

steady flow and uniform  

flow over CS 

65.1
g

S



  

D/d = 3 

Q = 2

2

V
12

1

4








 

    = .716 ft
3
/s  
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3.  Forces on Bends 

 
Consider the flow through a bend in a pipe.  The flow is 

considered steady and uniform across the inlet and outlet 
sections.  Of primary concern is the force required to hold the 

bend in place, i.e., the reaction forces Rx and Ry which can be 

determined by application of the momentum equation. 
 

 
 

 

 
 

 
 

 

 
 

 
 

Continuity:   2211 AVAVAV0  

   i.e., Q = constant = 2211 AVAV   

 

x-momentum:    AVuFx   

    
22x211x1x2211 AVVAVVRcosApAp   

           =  
x1x2 VVQ   

 

y-momentum:     AVvFy  

Rx, Ry = reaction force on 

     bend i.e., force  

     required to hold  

     bend in place 
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22y211y1bfy22 AVVAVVwwRsinAp   

        =  
y1y2 VVQ   

 
 

4. Force on a rectangular sluice gate 

The force on the fluid due to the gate is calculated from the x-
momentum equation: 

   AVuFx  

 
   

2221112viscGW1 AVVAVVFFFF   

 

 
visc1212GW FVVQFFF   

 =  
121

1

2

2
VVQby

2

y
by

2

y
  

   
12

2

1

2

2GW VVQyyb
2

1
F   

usually can be neglected 

by

Q
V

by

Q
V

2

2

1

1
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12

2

y

1

y

1

b

Q
 

 

5. Application of relative inertial coordinates for a moving but 
non-deforming control volume (CV) 

 
The CV moves at a constant velocity CS

V  with respect to 

the absolute inertial coordinates. If R
V  represents the 

velocity in the relative inertial coordinates that move 

together with the CV, then: 

                                     R C S
V V V   

                     
Reynolds transport theorem for an arbitrary moving deforming 
CV:  

                     
SYS

R

CV CS

dB d
d V n dA

dt dt
         

For a non-deforming CV moving at constant velocity, RTT for 

incompressible flow: 

                     
syst

R

CV CS

dB
d V ndA

dt t


  


   


 

    
 

 

1) Conservation of mass 

   syst
B M , and 1  : 

                                R

CS

dM
V ndA

dt
 

                                         

 

For steady flow:  

                                    0
R

CS

V ndA 
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2) Conservation of momentum  

    CSsyst R
B M V V   and syst R C S

dB dM V V      
                   

   
 

[ ]
CS CSR R

CSR R

CV CS

d M V V V V
F d V V V ndA

dt t
 

  
     


  

 

For steady flow with the use of continuity: 

                               

 CSR R

CS

CSR R R

CS CS

F V V V ndA

V V ndA V V ndA



 

  

   

 

 
0

        

R R

CS

F V V ndA  
                  

 

 

Example (use relative inertial coordinates): 
 

Ex) A jet strikes a vane which moves to the right at constant velocity    on a 
frictionless cart.  Compute (a) the force    required to restrain the cart and (b) 

the power   delivered to the cart.  Also find the cart velocity for which (c) the 
force    is a maximum and (d) the power   is a maximum. 
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Solution: 

 
Assume relative inertial coordinates with non-deforming CV i.e. CV moves 

at constant translational non-accelerating  
 

                                                      ̂      ̂      ̂     ̂ 

 

then R CS
V V V   . Also assume steady flow    ( )  with            and neglect 

gravity effect. 

 
Continuity: 

                                                    0
R

CS

V ndA   

Bernoulli without gravity: 

                                          1
p

0
2

1 2

1

2
R

V p 
0

2

2

1

2
R

V  

                                                        1 2R R
V V  

       Since                                1 1 2 2R R
V A V A   

                                                      1 2 j
A A A        

  

Momentum: 

∑   ∫          
  

 

∑        ∫          
  

 

         (      )      (     ) 

 

   ∫       
  

 

                 

            (     )⏟        
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     (     )[ (     )  ]   (     )     (     )   

    (     )
 
  [      ] 

 

              (     )
 
  (      ) 

 

         
   (      )      

     
  

   
   

     (  
          

 )  (      ) 

  (  
       

      
 )  (      ) 

 

  

   
  (  

           
 )  (      )    

   
          

    

   

     √    
      

 

 
 
       

 
 

   
  
 

 

 

     
  
 
 (
   
 
)
 

  (      ) 

 
 

  
  
    (      ) 
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5.3 Energy Equation 
 

Derivation of the Energy Equation 
 

The First Law of Thermodynamics 
The difference between the heat added to a system and the work 

done by a system depends only on the initial and final states of 
the system; that is, depends only on the change in energy E: 

principle of conservation of energy 

 

  E = Q – W 

 

E = change in energy 

Q = heat added to the system 
W = work done by the system 

 
E = Eu + Ek + Ep = total energy of the system 
    potential energy 
   kinetic energy 

 
 

 
The differential form of the first law of thermodynamics 

expresses the rate of change of E with respect to time 

 

 WQ
dt

dE    

rate of work being done by system 

 
rate of heat transfer to system 

Internal energy due to molecular motion  
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Energy Equation for Fluid Flow 

The energy equation for fluid flow is derived from Reynolds 
transport theorem with 

 
Bsystem = E = total energy of the system (extensive property) 

 

 = E/mass = e = energy per unit mass (intensive property) 

   = û  + ek + ep 
 

  
CSCV

dAVeVed
dt

d

dt

dE
 

ˆ ˆ( ) ( )
k p k p

CV CS

d
Q W u e e dV u e e V dA

dt
           

 
This can be put in a more useable form by noting the following: 

        

2

V

M

2/MV

mass

VvelocitywithmassofKETotal
e

22

k 



  

gz
V

zV

M

E
e

p

p 






   (for Ep due to gravity only) 

 
 

2 2

ˆ ˆ
2 2CV Cs

d V V
Q W gz u dV gz u V dA

dt
 
   

          
   

   

  
 rate of work   rate of change  flux of energy 

 done by system  of energy in CV  out of CV 
         (ie, across CS) 

rate of heat 
transfer to sysem 

VV
2
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System at time t + t 

System at time t 

CS 

Rate of Work Components:  
fs WWW    

For convenience of analysis, work is divided into shaft work Ws 

and flow work Wf 
 

Wf = net work done on the surroundings as a result of  
 normal and tangential stresses acting at the control  

 surfaces 

     = Wf pressure + Wf shear 
 

 
Ws = any other work transferred to the surroundings  

 usually in the form of a shaft which either takes  

 energy out of the system (turbine) or puts energy into  
 the system (pump) 

 
 

Flow work due to pressure forces  Wf p  (for system) 

          

 

 

 

        

       

  

Work = force  distance 

     at 2 W2 = p2A2  V2t 

rate of work 2222222 AVpVApW    

 

at 1 W1 = p1A1  V1t  

 1111 AVpW    

Note: here V  uniform over A  

(on surroundings) 

neg. sign since pressure 

force on surrounding 

fluid acts in a direction 

opposite to the motion 
of the system boundary 

CV 
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In general, 

   

  AVpW fp   

 

for more than one control surface and V not necessarily uniform 
over A: 

 

   









 

CSCSfp dAV
p

dAVpW  

  fshearfpf WWW    

 
Basic form of energy equation 

2 2

ˆ ˆ
2 2

s fshear
CS

CV CS

p
Q W W V dA

d V V
gz u dV gz u V dA

dt




 

 
    

 

   
         

   



 

 
2

2

ˆ
2

ˆ
2

s fshear
CV

CS

d V
Q W W gz u dV

dt

V p
gz u V dA






 
     

 

 
     

 





                    h=enthalpy 

 

 
 

 
 

Usually this term can be 
eliminated by proper choice of 

CV, i.e. CS normal to flow lines.  
Also, at fixed boundaries the 

velocity is zero (no slip 
condition) and no shear stress 
flow work is done.  Not included 

or discussed in text! 
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Simplified Forms of the Energy Equation 
 
Energy Equation for Steady One-Dimensional Pipe Flow 

 
Consider flow through the pipe system as shown 

 

 
 

 
 

 

 
 

 
 

Energy Equation (steady flow) 
2

ˆ
2

s
CS

V p
Q W gz u V dA



 
      

 
  

1 1

2 2

3

1 1 1

1 1 1 1 1 1

3

2 2 2

2 2 2 2 2 2

ˆ
2

ˆ
2

s
A A

A A

p V
Q W gz u V A dA

p V
gz u V A dA











 
     

 

 
    

 

 

 
 

 
*Although the velocity varies across the flow sections the 

streamlines are assumed to be straight and parallel; 
consequently, there is no acceleration normal to the streamlines 

and the pressure is hydrostatically distributed, i.e., p/ +gz = 
constant. 
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*Furthermore, the internal energy u can be considered as 

constant across the flow sections, i.e. T = constant.  These 
quantities can then be taken outside the integral sign to yield 

1 1

2 2

3

1 1

1 1 1 1 1

3

2 2

2 2 2 2 2

ˆ
2

ˆ
2

s
A A

A A

p V
Q W gz u V dA dA

p V
gz u V dA dA

 


 


 
     

 

 
    
 

 

 
 

 

Recall that AVdAVQ    

So that  mAVdAV     mass flow rate 

 

Define:  m
2

V

2

AV
dA

2

V
23

A

3




  

   K.E. flux              K.E. flux for V= V =constant across pipe 

i.e.,        









A

3

dA
V

V

A

1
 = kinetic energy correction factor 

2 2

1 21 2

1 1 1 2 2 2
ˆ ˆ

2 2

p pV V
Q W gz u m gz u m 

 

   
           
   
   

 
2 2

1 21 2

1 1 1 2 2 2

1
ˆ ˆ

2 2

p pV V
Q W gz u gz u

m
 

 
          

 

Note that:  = 1 if V is constant across the flow section 

 > 1 if V is nonuniform 
 
 

 

 

 laminar flow  = 2        turbulent flow  = 1.05   1 may be used 
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Shaft Work 

Shaft work is usually the result of a turbine or a pump in the 
flow system.  When a fluid passes through a turbine, the fluid is 

doing shaft work on the surroundings; on the other hand, a pump 
does work on the fluid 

 
pts WWW     where tW  and 

pW  are 

     magnitudes of power 








time

work
 

Using this result in the energy equation and deviding by g 

results in  
 

   

2 2

1 1 2 2 2 1

1 1 2 2

ˆ ˆ

2 2

p t
W Wp V p V u u Q

z z
mg mg g mg

 
 


          

 
   mechanical part       thermal part 

 

Note: each term has dimensions of length 
Define the following: 

 

Q

W

Qg

W

gm

W
h

ppp

p












 

 

gm

W
h

t

t



  

 

2 1
ˆ ˆ

L

u u Q
h head loss

g m g
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Head Loss 

In a general fluid system a certain amount of mechanical energy 
is converted to thermal energy due to viscous action.  This effect 

results in an increase in the fluid internal energy.  Also, some 
heat will be generated through energy dissipation and be lost 

(i.e. -Q ).  Therefore the term 

      from 2
nd

 law 

 

 
2 1

ˆ ˆ
0

L

u u Q
h

g gm


     

 

Note that adding Q  to system will not make hL = 0 since this 

also increases u.  It can be shown from 2
nd

 law of 
thermodynamics that hL > 0. 

 

Drop  over V  and understand that V in energy equation refers 

to average velocity. 
 

Using the above definitions in the energy equation results in 

(steady 1-D incompressible flow) 
 

Lt2

2

2

2

2

p1

2

1

1

1
hhz

g2

Vp
hz

g2

Vp






 

 
form of energy equation used for this course! 

 

 
 

 
 

represents a loss in 
mechanical energy due 

to viscous stresses 
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Comparison of Energy Equation and Bernoulli Equation 

 
Apply energy equation to a stream tube without any shaft work 

 
 

 

 
 

 
 

 

Energy eq : 
L2

2

22

1

2

11
hz

g2

Vp
z

g2

Vp






 

 

If hL = 0 (i.e.,  = 0) we get Bernoulli equation and 

conservation of mechanical energy along a streamline 
 

Therefore, energy equation for steady 1-D pipe flow can be 
interpreted as a modified Bernoulli equation to include viscous 

effects (hL) and shaft work (hp or ht) 
 

Summary of the Energy Equation 

 
The energy equation is derived from RTT with  

 
B = E = total energy of the system 

 

 = e = E/M  = energy per unit mass 
 

Infinitesimal stream tube  1=2=1 
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heat 
add

g2

V
z

p
2

1

1

1




ed 
Neglected in text presentation 

  = û  + 
2

V
2

1
+gz 

 

 internal   KE      PE 
 

WQdAVeVed
dt

d

dt

dE

CSCV

       

       
 

 

vps WWWW    

 
 

 
 

 

 

   
CSCV

p dAVpdAVpW    

 

pts WWW    

   
CSCV

pt dAVepeVed
dt

d
WWQ   

21
ˆ

2
e u V gz    

 
For steady 1-D pipe flow (one inlet and one outlet): 

1) Streamlines are straight and parallel  

  p/ +gz = constant across CS 

work 
done 

from 1
st
 Law of 

Thermodynamics 

shaft work 
done on or 
by system 

(pump or 
turbine) 

pressure 
work done 

on CS 

Viscous stress 
work on CS 
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mechanical energy 
Thermal 
energy 

Note: each term 
has  

  units of length 
 

V is average velocity 
(vector dropped) and  

 corrected by  

2) T = constant  u = constant across CS 
 

3) define  









CS

3

dA
V

V

A

1
 = KE correction factor 

  

   





m
2

V
A

2

V
dAV

2

23

3
  

   
 

Lt2

2

2

2

2

p1

2

1

1

1
hhz

g2

Vp
hz

g2

Vp






 

 

gmWh pp
  

 

gmWh tt
  

 

2 1
ˆ ˆ

L

u u Q
h

g mg


    head loss 

   > 0  represents loss in mechanical energy due to viscosity
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abrupt 
change due 
to hp or ht 

g2

V

D

L
f

2

 

Concept of Hydraulic and Energy Grade Lines 
 

Lt2

2

2

2

2

p1

2

1

1

1
hhz

g2

Vp
hz

g2

Vp






 

Define  HGL = z
p



 

  EGL = 
g2

V
z

p
2




 

 

HGL corresponds to pressure tap measurement + z 
EGL corresponds to stagnation tube measurement + z 

 

 
 

 
 

 

 
 

 

pressure tap:  h
p 2




 

stagnation tube:  h
g2

Vp
2

22



 

 

EGL1 + hp = EGL2 + ht + hL 

EGL2 = EGL1 + hp  ht  hL 
 

 

point-by-point 
application is 

graphically 
displayed 

h = height of fluid in 
      tap/tube 

EGL = HGL if V = 0 

hL = 
g2

2
V

D

L
f  

i.e., linear variation in L for D, 
V, and f constant 

EGL1 = EGL2 + hL 

for hp = ht = 0 

f = friction factor  

f = f(Re) 
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Helpful hints for drawing HGL and EGL 

 

1. EGL = HGL + V
2
/2g = HGL for V = 0 

 

2.&3. 
g2

V

D

L
fh

2

L   in pipe means EGL and HGL will slope  

  downward, except for abrupt changes due to ht or hp 

 

  

Lh

g2

2

2V

2z
2p

g2

2

1V

1z
1p









 

HGL2 = EGL1 - hL 

g2

2
V

Lh  for abrupt expansion 
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4. p = 0  HGL = z 
 

5. for 
g2

V

D

L
fh

2

L   = constant  L 

 

EGL/HGL slope downward 
 

6. for change in D  change in V 
 

 i.e. V1A1 = V2A2 

  
4

D
V

4

D
V

2

2

2

2

1

1





 

  
2

21

2

11 DVDV   

 

 

i.e., linearly increased for 

increasing L with slope 
g2

V

D

f
2

 

change in distance between 

HGL & EGL and slope  
change due to change in hL  
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7.  If HGL < z then p/ < 0  i.e., cavitation possible 
 

 
 

 

condition for cavitation: 
 

  
2va

m

N
2000pp   

 

gage pressure 
2atmatmAg,va

m

N
000,100pppp   

 

   m10
p g,va




 

 

      9810 N/m
3
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Application of the Energy, Momentum, and 

Continuity Equations in Combination 
 

In general, when solving fluid mechanics problems, one should 

use all available equations in order to derive as much 
information as possible about the flow.  For example, consistent 

with the approximation of the energy equation we can also apply 
the momentum and continuity equations 

 

Energy:  

Lt2

2

2

2

2

p1

2

1

1

1
hhz

g2

Vp
hz

g2

Vp






 

 

Momentum: 

    121

2

12

2

2s VVQAVAVF  

 

Continuity: 

 A1V1 = A2V2 = Q = constant 

one inlet and 
one outlet 

 = constant 
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Abrupt Expansion 

Consider the flow from a small pipe to a larger pipe.  Would like 
to know hL = hL(V1,V2).  Analytic solution to exact problem is 

extremely difficult due 
to the occurrence of 

flow separations and 

turbulence.  However, if 
the assumption is made 

that the pressure in the 
separation region 

remains approximately 

constant and at the 
value at the point of 

separation, i.e, p1, an approximate solution for hL is possible: 
 

Apply Energy Eq from 1-2 (1 = 2 = 1) 

L

2

2

2

2

2

1

1

1
h

g2

V
z

p

g2

V
z

p






 

 

Momentum eq. For CV shown (shear stress neglected) 

 

   AVusinWApApF 2221s
 

      = )AV(V)AV(V 222111   

      = 1

2

12

2

2 AVAV   

 

      W  sin  

next divide momentum equation by A2 

L

z
LA 2
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÷ A2    


















1

A

A

A

A

g

V

A

A

g

V

g

V
zz

pp

2

1

2

1

2

1

2

1

2

1

2

2

21

21  

 

from energy equation   

     

      
2

1

2

1

2

2

L

2

1

2

2

A

A

g

V

g

V
h

g2

V

g2

V
  

   

    














2

1

2

1

2

2

L
A

A2
1

g2

V

g2

V
h  

 

    










2

12

1

2

1

2

2L
A

A
V2VV

g2

1
h  

 

          2V1V2 

   

   
2

12L VV
g2

1
h   

 

If V2 << V1, 

2

L 1

1
h = V

2 g
 

continutity eq. 

V1A1 = V2A2 

    
1

2

2

1

V

V

A

A
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Forces on Transitions 

 
Example 7-6 

Q = .707 m
3
/s 

head loss = 
g2

V
1.

2

2  

(empirical equation) 

 

 
Fluid = water 

p1 = 250 kPa 
D1 = 30 cm 

D2 = 20 cm 

Fx = ? 
 

 
 

First apply momentum theorem 

 

   AVuFx  

 

Fx + p1A1  p2A2 = V1(V1A1) + V2(V2A2)  
 

Fx = Q(V2  V1)  p1A1 + p2A2 

  

force required to hold transition in place 
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The only unknown in this equation is p2, which can be obtained 

from the energy equation. 
 

 
L

2

22

2

11
h

g2

Vp

g2

Vp






  note: z1 = z2 and  = 1 

 

 








 L

2

1

2

2

12 h
g2

V

g2

V
pp  drop in pressure 

 

  
11L

2

1

2

2

1212x Aph
g2

V

g2

V
pAVVQF 























  

 

         p2   
 

In this equation,     
 

 V1 = Q/A1 = 10 m/s       

 V2 = Q/A2 = 22.5 m/s 

 m58.2
g2

V
1.h

2

2

L   

 

 Fx = 8.15 kN  is negative x direction to hold  
transition in place 

 
 

(note: if p2 = 0 same as nozzle) 

continuity A1V1 = A2V2 

   
1

2

1

2 V
A

A
V   

   i.e. V2 > V1 


