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Chapter 3 Bernoulli Equation 

3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 

1) A streamline   (   ) is a line that is everywhere tangent to the velocity 

vector at a given instant. 

 
Examples of streamlines around an airfoil (left) and a car (right) 

2) A pathline is the actual path traveled by a given fluid particle. 

 
An illustration of pathline (left) and an example of pathlines, motion of water induced by surface waves (right) 

3) A streakline is the locus of particles which have earlier passed through a 
particular point.   

 
An illustration of streakline (left) and an example of streaklines, flow past a full-sized streamlined vehicle in the GM aerody-

namics laboratory wind tunnel, and 18-ft by 34-ft test section facilility by a 4000-hp, 43-ft-diameter fan (right) 
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Note: 

1. For steady flow, all 3 coincide. 
2. For unsteady flow,  ( ) pattern changes with time, whereas pathlines and 

streaklines are generated as the passage of time 

Streamline: 

By definition we must have        which upon expansion yields the 

equation of the streamlines for a given time      

  

 
 
  

 
 
  

 
    

where   = integration parameter.  So if ( ,  ,  ) know, integrate with respect to   
for      with I.C. (  ,   ,   ,   ) at     and then eliminate  . 

Pathline: 

The path line is defined by integration of the relationship between velocity 
and displacement. 

  

  
      

  

  
      

  

  
   

Integrate  ,  ,   with respect to   using I.C. (  ,   ,   ,   ) then eliminate  . 

Streakline: 

To find the streakline, use the integrated result for the pathline retaining 
time as a parameter.  Now, find the integration constant which causes the path-
line to pass through (  ,   ,   ) for a sequence of time    .  Then eliminate  . 
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3.2 Streamline Coordinates 

Equations of fluid mechanics can be expressed in different coordinate sys-
tems, which are chosen for convenience, e.g., application of boundary conditions: 
Cartesian ( ,  ,  ) or orthogonal curvilinear (e.g.,  ,  ,  ) or non-orthogonal curvi-
linear.  A natural coordinate system is streamline coordinates ( ,  ,  ); however, 
difficult to use since solution to flow problem ( ) must be known to solve for 

steamlines. 

For streamline coordinates, since   is tangent to   there is only one velocity 

component. 

 (   )    (   ) ̂    (   ) ̂ 

where      by definition. 

 

Figure 4.8 Streamline coordinate system for two-dimensional flow. 

The acceleration is 

  
  

  
 
  

  
 (   )  

where, 
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Figure 4.9 Relationship between the unit vector along the streamline,  ̂, and the radius of 
curvature of the streamline,   
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where, 

 
   

  
 = local    in  ̂ direction 

   

  
 = local    in  ̂ direction 

  
   

  
 = convective    due to spatial gradient of    

i.e. convergence /divergence   

  
 

 
 = convective    due to curvature of   : centrifugal accerleration 
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3.3 Bernoulli Equation 

Consider the small fluid particle of size    by    in the plane of the fig-
ure and    normal to the figure as shown in the free-body diagram below.  For 
steady flow, the components of Newton’s second law along the streamline and 
normal directions can be written as following: 

 

1) Along a streamline 

                     

where, 

        (   )  (  
   

  
) 

              

       (     )     (     )               

              
  

  
   

Thus, 

 (   )  (  
   

  
)   

  

  
           

    
  

  

  

 
  

1st order Taylor Series  
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    change in speed due to 
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 (i.e.   along  ̂) 

 

2) Normal to a streamline 

                     

where,  
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    streamline curvature is due to 
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1st order Taylor Series  
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In a vector form: 

       (    )            (Euler equation) 

or    (  
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Steady flow,   = constant,  ̂ equation 
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Steady flow,   = constant,  ̂ equation 

   
  
 

 
  

 

  
(    )  

   ∫
  
 

 
   

 

 
             

For curved streamlines      (= constant for static fluid) decreases in the  ̂ di-
rection, i.e. towards the local center of curvature. 

It should be emphasized that the Bernoulli equation is restricted to the fol-
lowing: 

 inviscid flow 

 steady flow 

 incompressible flow 

 flow along a streamline 

Note that if in addition to the flow being inviscid it is also irrotational, i.e. 
rotation of fluid =   = vorticity =     = 0, the Bernoulli constant is same for all  , 

as will be shown later. 
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3.4 Physical interpretation of Bernoulli equation 

Integration of the equation of motion to give the Bernoulli equation actual-
ly corresponds to the work-energy principle often used in the study of dynamics.  
This principle results from a general integration of the equations of motion for an 
object in a very similar to that done for the fluid particle.  With certain assump-
tions, a statement of the work-energy principle may be written as follows: 

The work done on a particle by all forces acting on the particle is equal to 
the change of the kinetic energy of the particle. 

The Bernoulli equation is a mathematical statement of this principle. 

In fact, an alternate method of deriving the Bernoulli equation is to use the 
first and second laws of thermodynamics (the energy and entropy equations), ra-
ther than Newton’s second law.  With the approach restrictions, the general en-
ergy equation reduces to the Bernoulli equation. 

An alternate but equivalent form of the Bernoulli equation is 

 

 
 
  

  
            

along a streamline. 

Pressure head: 
 

 
 

Velocity head: 
  

  
 

Elevation head:   

The Bernoulli equation states that the sum of the pressure head, the velocity 
head, and the elevation head is constant along a streamline. 
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3.5 Static, Stagnation, Dynamic, and Total Pressure 

  
 

 
                   

along a streamline. 

Static pressure:   

Dynamic pressure: 
 

 
    

Hydrostatic pressure:    

 

Stagnation points on bodies in flowing fluids. 

Stagnation pressure:   
 

 
    (assuming elevation effects are negligible) where 

  and   are the pressure and velocity of the fluid upstream of stagnation 
point.  At stagnation point, fluid velocity   becomes zero and all of the ki-
netic energy converts into a pressure rize. 

Total pressure:      
 

 
       (along a streamline) 
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The Pitot-static tube (left) and typical Pitot-static tube designs (right). 

 

 

Typical pressure distribution along a Pitot-static tube. 

  



57:020 Mechanics of Fluids and Transport Processes 
Professor Fred Stern  Fall 2013 

 

Chapter 3 
12 

3.6 Applications of Bernoulli Equation 

1) Stagnation Tube 
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Limited by length of tube and need 
for free surface reference 
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2) Pitot Tube 
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where,      and   = piezometric head 
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      from manometer or pressure gage 

 

For gas flow    ⁄     
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3) Free Jets 

 

Vertical flow from a tank 

Application of Bernoulli equation between points (1) and (2) on the streamline 
shown gives 

   
 

 
   

         
 

 
   

      

Since     ,     ,     ,     ,     , we have 

   
 

 
   

  

   √ 
  

 
 √    

Bernoulli equation between points (1) and (5) gives 

   √  (   ) 
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4) Simplified form of the continuity equation 

 

 

Steady flow into and out of a tank 

 

Obtained from the following intuitive arguments: 

Volume flow rate:      

Mass flow rate:  ̇         

 

Conservation of mass requires 

              

 

For incompressible flow      , we have 

          

or  
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5) Volume Rate of Flow (flowrate, discharge) 

1. Cross-sectional area oriented normal to velocity vector  
    (simple case where    ) 

 

  = constant:   = volume flux =    [m/s  m2 = m3/s] 

   constant:   ∫    
 

 

Similarly the mass flux =  ̇  ∫     
 

 

2. General case 
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Example: 

At low velocities the flow through a long circular tube, i.e. pipe, has a para-
bolic velocity distribution (actually paraboloid of revolution). 

      (  (
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where,      = centerline velocity 

 

a) find   and  ̅ 
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6) Flowrate measurement 

Various flow meters are governed by the Bernoulli and continuity equations. 

 

Typical devices for measuring flowrate in pipes. 

Three commonly used types of flow meters are illustrated: the orifice me-
ter, the nozzle meter, and the Venturi meter.  The operation of each is based on 
the same physical principles—an increase in velocity causes a decrease in pres-
sure.  The difference between them is a matter of cost, accuracy, and how closely 
their actual operation obeys the idealized flow assumptions. 

We assume the flow is horizontal (     ), steady, inviscid, and incom-
pressible between points (1) and (2).  The Bernoulli equation becomes: 
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If we assume the velocity profiles are uniform at sections (1) and (2), the continui-
ty equation can be written as: 

            

where    is the small (     ) flow area at section (2).  Combination of these 
two equations results in the following theoretical flowrate 

    √
 (     )

 [  (    ⁄ ) ]
 

assumed vena contracta = 0, i.e., no viscous effects. Otherwise, 

      √
 (     )

 [  (    ⁄ ) ]
 

where    = contraction coefficient 

     
A smooth, well-contoured nozzle (left) and a sharp corner (right) 

The velocity profile of the left nozzle is not uniform due to differences in el-
evation, but in general     and we can safely use the centerline velocity,   , as 
a reasonable “average velocity.”   

For the right nozzle with a sharp corner,    will be less than   .  This phe-

nomenon, called a vena contracta effect, is a result of the inability of the fluid to 

turn the sharp 90 corner. 
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Figure 3.14 Typical flow patterns and contraction coefficients 

The vena contracta effect is a function of the geometry of the outlet.  Some 
typical configurations are shown in Fig. 3.14 along with typical values of the ex-
perimentally obtained contraction coefficient,        ⁄ , where    and    are 

the areas of the jet a the vena contracta and the area of the hole, respectively. 
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Other flow meters based on the Bernoulli equation are used to measure 
flowrates in open channels such as flumes and irrigation ditches.  Two of these 
devices, the sluice gate and the sharp-crested weir, are discussed below under 
the assumption of steady, inviscid, incompressible flow. 

 

Sluice gate geometry 

We apply the Bernoulli and continuity equations between points on the free sur-
faces at (1) and (2) to give: 

   
 

 
   

         
 

 
   

      

and  

                        

With the fact that        : 

          √
  (     )

  (    ⁄ ) 
 

In the limit of      , then    √    : 

  (   )      √     
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Rectangular, sharp-crested weir geometry 

For such devices the flowrate of liquid over the top of the weir plate is de-
pendent on the weir height,   , the width of the channel,  , and the head,  , of 
the water above the top of the weir.  Between points (1) and (2) the pressure and 
gravitational fields cause the fluid to accelerate from velocity    to velocity   . At 
(1) the pressure is      , while at (2) the pressure is essentially atmospheric, 
    .  Across the curved streamlines directly above the top of the weir plate 
(section a–a), the pressure changes from atmospheric on the top surface to some 
maximum value within the fluid stream and then to atmospheric again at the bot-
tom surface. 

For now, we will take a very simple approach and assume that the weir flow 
is similar in many respects to an orifice-type flow with a free streamline. In this 
instance we would expect the average velocity across the top of the weir to be 

proportional to √    and the flow area for this rectangular weir to be propor-

tional to   . Hence, it follows that 

      √       √   
 
  

  



57:020 Mechanics of Fluids and Transport Processes 
Professor Fred Stern  Fall 2013 

 

Chapter 3 
23 

3.7 Energy grade line (EGL) and hydraulic grade line (HGL) 

This part will be covered later at Chapter 5. 

 

 

 

3.8 Limitations of Bernoulli Equation 

Assumptions used in the derivation Bernoulli Equation: 

(1) Inviscid  
(2) Incompressible  
(3) Steady  
(4) Conservative body force 

1) Compressibility Effects:  

The Bernoulli equation can be modified for compressible flows.  A simple, 
although specialized, case of compressible flow occurs when the temperature of a 
perfect gas remains constant along the streamline—isothermal flow.  Thus, we 
consider      , where   is constant (In general,  ,  , and   will vary).  An 
equation similar to the Bernoulli equation can be obtained for isentropic flow of a 
perfect gas.  For steady, inviscid, isothermal flow, Bernoulli equation becomes 

  ∫
  

 
 
 

 
            

The constant of integration is easily evaluated if   ,   , and    are known at some 
location on the streamline.  The result is 
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2) Unsteady Effects:  

The Bernoulli equation can be modified for unsteady flows. With the inclu-
sion of the unsteady effect (    ⁄   ) the following is obtained: 

 
  

  
      

 

 
  (  )        (along a streamline) 

For incompressible flow this can be easily integrated between points (1) and (2) to 
give 

   
 

 
   

       ∫
  

   
  

  
  

    
 

 
   

      (along a streamline) 

3) Rotational Effects 

Care must be used in applying the Bernoulli equation across streamlines.  If 
the flow is “irrotational” (i.e., the fluid particles do not “spin” as they move), it is 
appropriate to use the Bernoulli equation across streamlines.  However, if the 
flow is “rotational” (fluid particles “spin”), use of the Bernoulli equation is re-
stricted to flow along a streamline. 

4) Other Restrictions 

Another restriction on the Bernoulli equation is that the flow is inviscid. The 
Bernoulli equation is actually a first integral of Newton's second law along a 
streamline.  This general integration was possible because, in the absence of vis-
cous effects, the fluid system considered was a conservative system. The total en-
ergy of the system remains constant.  If viscous effects are important the system 
is nonconservative and energy losses occur.  A more detailed analysis is needed 
for these cases. 

The Bernoulli equation is not valid for flows that involve pumps or turbines.  
The final basic restriction on use of the Bernoulli equation is that there are no 
mechanical devices (pumps or turbines) in the system between the two points 
along the streamline for which the equation is applied.  These devices represent 
sources or sinks of energy.  Since the Bernoulli equation is actually one form of 
the energy equation, it must be altered to include pumps or turbines, if these are 
present. 


