

Lesson 34: Regional Flood Analysis Iowa Examples

Streamgage Sites (2013 study)

Lesson 34: Regional Flood Analysis Iowa Examples

Regional Delineation (2001 study)

Lesson 34: Regional Flood Analysis Iowa Examples

Regional equations (2001)

Table 4. Flood-frequency estimation equations for Region 2

[SEE, standard error of estimate; SEP, average standard error of prediction; EYR, equivalent years of record; Q, peak discharge, in cubic feet per second for recurrence interval, in years, indicated as subscript; DA, drainage area, in square miles; MCS, main-channel slope, in feet per mile; DML, Des Moines Lobe, ratio of basin area within Des Moines Lobe landform region to total area of basin]

Estimation equation	SEE (percent)	SEP (percent)	EYR (years)
(One-variable equations; number of	streamflow-gaging	stations = 188)	
$Q_2 = 182 \text{ DA}^{.540}$	43.0	44.6	3.6
$Q_5 = 464 \text{ DA}^{.490}$	31.2	38.1	7.9
$Q_{10} = 728 \text{ DA}^{.465}$	26.9	35.4	13.5
$Q_{25} = 1,120 \text{ DA}^{.441}$	25.2	34.4	20.5
$Q_{50} = 1,440 \text{ DA}^{.427}$	25.6	34.8	24.0
$Q_{100} = 1,800 \text{ DA}^{.415}$	26.8	35.6	25.9
$Q_{200} = 2,200 \text{ DA}^{.403}$	28.6	36.7	26.5
$Q_{500} = 2,790 \text{ DA}^{.389}$	31.4	38.4	26.0
(Three-variable equations; number of	f streamflow-gaging	stations = 188)	
$Q_2 = 52.2 \text{ DA}^{.677} \text{ MCS}^{.316} \text{ (DML+1)}^{753}$	37.3	41.7	4.6
$Q_5 = 144 \text{ DA}^{.616} \text{ MCS}^{.305} (\text{DML}+1)^{653}$	25.4	34.5	11.3
$Q_{10} = 225 \text{ DA}^{.590} \text{ MCS}^{.306} \text{ (DML+1)}^{601}$	21.6	32.0	19.9
$Q_{25} = 337 \text{ DA}^{.567} \text{ MCS}^{.309} \text{ (DML+1)}^{567}$	20.4	31.3	29.5
$Q_{50} = 430 \text{ DA}^{.554} \text{ MCS}^{.311} (\text{DML}+1)^{555}$	21.2	31.9	33.2
$Q_{100} = 531 \text{ DA}^{-542} \text{ MCS}^{-313} \text{ (DML+1)}^{549}$	22.6	32.9	34.3
$Q_{200} = 641 \text{ DA}^{-532} \text{ MCS}^{-316} \text{ (DML+1)}^{545}$	24.6	34.4	33.7
$Q_{500} = 800 \text{ DA}^{-519} \text{ MCS}^{-320} \text{ (DML+1)}^{542}$	27.8	36.5	31.7

Regional equations (2013)

 Table 10.
 Regression equations for estimating annual exceedance-probability discharges for unregulated streams in flood region 2 of lowa.

[SEP, average standard error of prediction; Pseudo-R², pseudo coefficient of determination; SEM, average standard error of model; AVP, average variance of prediction; %, percent; DRNAREA, geographic information system drainage area; DESMOIN, percent of area within Des Moines Lobe landform region; BSHAPE, measure of basin shape]

Annual exceedance-probability equation	SEP (percent)	Pseudo-R ² (percent)	SEM (percent)	AVP (log ft³/s)²		
176 streamgages used to develop equations						
$Q_{50\%} = 10^{(-49.0+51.2 \times DRNAREA^{0.005}) \times (DESMODN+1)^{-0.009}}$	46.8	91.5	45.7	0.037		
Q _{20%} =10 ^{(30.+27.8 x DRNAREA-0.009} -0.001 x DESMODN-0.016 x BSHAPE)	25.7	96.7	24.4	0.012		
Q _{10%} =10(17.+14.6 x DRNAREA ^{-0.017} -0.002 x DESMOIN -0.019 x BSHAPE)	20.8	97.7	19.3	0.008		
$Q_{ax} = 10^{(13.7-10.7 \text{ x DRNAREA}^{-0.023} - 0.002 \text{ x DESMOIN} - 0.022 \text{ x BSHAPE})}$	19.4	97.9	17.6	0.007		
Q ₂₄₆ =10 ^{(12.2-9.10 x DRNAREA-0.027} -0.002 x DESMOIN -0.024 x BSHAPE)	20.4	97.6	18.5	0.008		
Q ₁₉₆ =10 ^{(11.1-7.92 x DRNAREA-0.031} -0.002 x DESMOIN -0.025 x BSHAPE)	22.3	96.9	20.3	0.009		
Q _{0.5%} =10 ^(10.5-7.20 x DRNAREA-0.034 -0.002 x DESMODN -0.026 x BSHAPE)	24.9	96.0	22.9	0.011		
$Q_{0.256} = 10^{(9.95-6.60 \times DRNAREA^{-0.037} - 0.002 \times DESMOIN - 0.028 \times BSHAPE)}$	28.2	94.7	26.1	0.014		