Lesson 24: Synthetic Unit Hydrographs NRCS Unit Hydrograph

NRCS (SCS) Approach

(b) Triangular Unit Hydrograph

Time Ratios	Discharge Ratios	Time Ratios	Discharge Ratios
t/t p	q/q _p	t/t p	q/q _p
0	0.000	1.7	0.460
0.1	0.030	1.8	0.390
0.2	0.100	1.9	0.330
0.3	0.190	2.0	0.280
0.4	0.310	2.2	0.207
0.5	0.470	2.4	0.147
0.6	0.660	2.6	0.107
0.7	0.820	2.8	0.077
0.8	0.930	3.0	0.055
0.9	0.990	3.2	0.040
1.0	1.000	3.4	0.029
1.1	0.990	3.6	0.021
1.2	0.930	3.8	0.015
1.3	0.860	4.0	0.011
1.4	0.780	4.5	0.005
1.5	0.680	5.0	0.000
1.6	0.560		

Lesson 24: Synthetic Unit Hydrographs NRCS Unit Hydrograph

SCS (NRCS) Unit Hydrographs

$$t_L \approx 0.6t_c$$
 [hours]
 $t_p = \frac{t_r}{2} + t_l$ [hours]
 $q_p = \frac{CA}{t_p}$ [m³/s or cfs]

C is 2.08 (SI) or 483.4 (US) A is km² (SI) or mi² (US)

NRCS Time of Concentration

Sheet Flow (Manning's n)

Table 15–1 Manning's roughness coefficients for sheet flow (flow depth generally $\leq 0.1 \text{ ft}$)				
Surface description	n 1/			
Smooth surface (concrete, asphalt, gravel, or bare soil)	0.011			
Fallow (no residue)				
Cultivated soils: Residue cover ≤ 20% Residue cover > 20%				
Grass: Short-grass prairie Dense grasses ² Bermudagrass	0.24			
Range (natural) Woods: ^{3/}	0.13			
Light underbrush Dense underbrush				

¹ The Manning's n values are a composite of information compiled by Engman (1986).

² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

³ When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

Lesson 24: Synthetic Unit Hydrographs NRCS Time of Concentration

Shallow Concentrated Flow (Flow Velocity V)

Figure 15-4 Velocity versus slope for shallow concentrated flow

Table 15-3 Equations and assumptions developed from figure 15-4 Flow type Velocity equation Depth Manning's n (ft/s) Pavement and small upland gullies 0.2 0.025 $V = 20.328(s)^{0.5}$ V=16.135(s)0.5 Grassed waterways 0.4 0.050 $V=9.965(s)^{0.5}$ Nearly bare and untilled (overland flow); and alluvial fans in western mountain 0.051 0.2 regions $V=8.762(s)^{0.5}$ Cultivated straight row crops 0.2 0.058 Short-grass pasture 0.2 0.073 V=6.962(s)0.5 $V=5.032(s)^{0.5}$ Minimum tillage cultivation, contour or strip-cropped, and woodlands 0.2 0.101 Forest with heavy ground litter and hay meadows 0.2 0.202 $V=2.516(s)^{0.5}$