Lesson 12: Infiltration Potential Infiltration Equations: Horton & Philips

Horton's Equation

The potential infiltration is given by:

 $f^{*}(t) = f_{c} + (f_{0} - f_{c})e^{-kt}$

where f_0 is initial infiltration rate, f_c is a constant (final) infiltration rate (apparent saturated conductivity), and k is an exponential decay rate. By integration:

$$F^{*}(t) = f_{c}t + \frac{(f_{0} - f_{c})}{k}(1 - e^{-kt})$$

Ponding time t_p for constant rainrate *i*:

$$t_{p} = \frac{1}{ik} \left[f_{0} - i + f_{c} \ln \left(\frac{f_{0} - f_{c}}{i - f_{c}} \right) \right], \text{ for } f_{c} < i < f_{0}$$

Equivalent time origin *t*₀:

$$t_0 = t_p - \frac{1}{k} \ln \left(\frac{f_0 - f_c}{i - f_c} \right)$$

Philip's Equation

The cumulative potential infiltration is given by:

$$F^*(t) = St^{1/2} + Kt$$

where *S* is the soil sorptivity (depends on soil water diffusivity) and *K* is the saturated hydraulic conductivity. By differentiation:

$$f^{*}(t) = \frac{dF(t)}{dt} = \frac{1}{2}St^{-1/2} + K$$

Ponding time t_p for constant rainrate *i*:

$$t_p = \frac{S^2(i - K/2)}{2i(i - K)^2}, \text{ for } i > K$$

Equivalent time origin t_0 :

$$t_0 = t_p - \frac{1}{4K^2} \left(\sqrt{S^2 + 4KF_p} - S \right)^2$$

where F_p is the cumulative infiltration at ponding time ($F_p = it_p$).