Lesson 26: Hydrologic Response Time of Concentration

Section 2C-3 - Time of Concentration

F. Design example

Time of concentration

Example: The sketch below shows a watershed. The problem is to compute T_c at the outlet of the watershed (point D). The 2-year 24-hour rainfall depth is 3.6 inches. All three types of flow occur from the hydraulically most distant point (A) to the point of interest (D). To compute T_c , first determine T_t for each segment from the following information:

Segment AB: Sheet flow

Dense grass

Slope (s) = 0.01 ft/ft Length (L) = 100 ft

Segment BC: Shallow concentrated flow

Unpaved s = 0.01 ft/ft L = 1400 ft

Segment CD: Channel flow

Manning's n = .05Flow area (a) = 27 ft²

Wetted perimeter $(p_w) = 28.2 \text{ ft}$

s = 0.005 ft/ftL = 7300 ft

Worksheet 2: Time of Concentration (T_c) or Travel Time (T_t)

Pr	roject <u>Example</u>	Ву	Date			
Lo	ocation	Checked	Date			
Ci	ircle one: Present (Developed)					
Ci	ircle one: $\left(T_{c}\right)T_{t}$ through subarea					
No de	otes: Space for as many as two segments per flow type escription of flow segments.	e can be used for each wor	ksheet. Include	a map, schematic,	or	
	Sheet flow (Applicable to Tc only)	Segment ID	AB	T	1	
1.	Surface description (Table 2)		Dense Grass]	
2.	Manning's roughness coeff., n (Table 2)		0.24]	
3.	Flow Length, L (Total L less than or equal to 300').	ft	100			
4.	Two-year 24-hour rainfall, P ₂	in	3.6]	
5.	Land slope, s	ft / ft	0.01]	
6.	$T_t = \frac{0.007 (nL)^{0.8}}{\left(\sqrt{P_2}\right) s^{0.4}} \text{Compute } T_t$	hr	0.30 +		=	0.30
	Shallow concentrated flow	Segment ID	ВС	T]	
7.	Surface description (paved or unpaved)		Unpaved			
8.	Flow length, L	ft	1400			
9.	Watercourse slope, s	ft / ft	0.01			
10.	Average velocity, V (Figure 1)	ft / s	1.6]	
11.	$T_t = \frac{L}{3600V}$ Compute T_t	hr	0.24 +		=	0.24
	Open channel flow	Segment ID	CD]	
12.	Cross sectional flow area, a	ft ²	27			
13.	Wetted perimeter, P _w	ft	28.2]	
14.	Hydraulic radius, $r = \frac{a}{P_W}$ Compute r	ft	0.957			
15.	Channel slope, s	ft / ft	0.005			
16.	Manning's roughness coeff., n		0.05			
17.	$V = \frac{1.49r^{2/3}s^{1/2}}{n}$ Compute V	ft/s	2.05			
18.	Flow length, L	ft	7300			
19.	$T_t = \frac{L}{3600V}$ Compute T_t	hr	0.99 +		=	0.99
20.	Watershed or subarea T _c or T _t (add T _t in steps 6, 11	and 19)			hr	1.53