Deconvolution by Back Substitution

Derive the 2-hour unit hydrograph by back substitution for watershed given the rainfall excess (P_e) and the direct runoff hydrograph.

			0.73	1.83	(Given)
UH	Storm		× UH	× UH	Observed
Time	Time	2-hr-UH	DRH_0	DRH ₁	DRH
(h)	(h)	(cfs)	(cfs)	(cfs)	(cfs)
0	4	u ₀			0
2	6	U ₁			125.8
4	8	U ₂			421.6
6	10	U ₃			543.4
8	12	U ₄			377.2
10	14	U_5			251.0
12	16	u ₆			134.8
14	18	U ₇			78.6
16	20	U ₈			37.4
18	22	U ₉			11.2
	24				0.0

Setup the set of deconvolution equations

Solve the deconvolution equations by backsubstitution

At time t = 4 h:

$$0.73u_0 = 0$$
$$\therefore u_0 = 0$$

At time t = 6 h:

$$0.73u_1 + 1.83u_0 = 125.8$$
$$\therefore u_1 = \frac{125.8 - 1.83u_0}{0.73} = \frac{125.8}{0.73} = 172.3$$

Deconvolution by Back Substitution

At time t = 8 h: $0.73u_2 + 1.83u_1 = 421.6$ $\therefore u_2 = \frac{421.6 - 1.83u_1}{0.73} = \frac{421.6 - 1.83(172.3)}{0.73} = 145.5$

At time t = 10 h:

$$0.73u_3 + 1.83u_2 = 543.4$$

$$\therefore u_3 = \frac{543.4 - 1.83u_2}{0.73} = \frac{543.4 - 1.83(145.5)}{0.73} = 379.6$$

At time t = 12 h:

$$0.73u_4 + 1.83u_3 = 377.2$$

$$\therefore u_4 = \frac{377.2 - 1.83u_3}{0.73} = \frac{377.2 - 1.83(379.6)}{0.73} = -434.8$$

At time t = 14 h:

$$0.73u_5 + 1.83u_4 = 251.0$$

$$\therefore u_5 = \frac{251.0 - 1.83u_4}{0.73} = \frac{251.0 - 1.83(-434.8)}{0.73} = 1433.8$$

$$\therefore$$

Outcome for back substitution

Negative unit hydrograph values.

Oscillating solution.

Reason for failure?

Unit hydrograph assumptions of linearity and superposition do not hold exactly.

Errors in measurements of streamflow and precipitation (or estimates of areal-average precipitation)

Deconvolution by Optimization (with Constraints)

Derive the 2-hour unit hydrograph by optimization (with constraints) for watershed given the rainfall excess (P_e) and the direct runoff hydrograph.

			0.73	1.83		(Given)	
UH	Storm		× UH	× UH	Predicted	Observed	
Time	Time	2-hr-UH	DRH ₀	DRH_1	DRH	DRH	Error
(h)	(h)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs ²)
0	4	0.0	0.0		0.0	0	0.0
2	6	144.1	105.2	0.0	105.2	125.8	425.3
4	8	231.1	168.7	263.7	432.3	421.6	115.4
6	10	162.6	118.7	422.9	541.5	543.4	3.5
8	12	113.8	83.0	297.5	380.5	377.2	11.2
10	14	60.3	44.0	208.2	252.2	251.0	1.5
12	16	36.3	26.5	110.4	136.8	134.8	4.2
14	18	18.9	13.8	66.4	80.2	78.6	2.6
16	20	6.8	5.0	34.6	39.6	37.4	4.9
18	22	0.0	0.0	12.5	12.5	11.2	1.8
	24			0.0	0.0	0.0	0.0
					1981.0	1981.0	570.3

Setup the set of deconvolution equations in Excel

Use Excel Solver (Add-on) to find unit hydrograph values

- 1. Set up Excel spreadsheet for solution
 - a) First initialize 2-hour unit hydrograph values
 - b) Compute the DRH_i values given initial UH
 - c) Compute the Predicted DRH
 - ^{d)} Evaluate the Errors: (Predicted Observed)² or | Predicted Observed |
- 2. Run Excel Solver
 - a) Set objective:
 - b) By Changing Variable Cells:
 - c) Subject to the Constraints:
 - d) Make Unconstrained Variables Non-Negative []

Deconvolution by Optimization (with Constraints)