Lesson 13: Infiltration Applications
 Infiltration Example: Philips Equation

Given

Constant rainrate storm $i=20 \mathrm{~mm} / \mathrm{hr}$ for 4 hours
$S=20 \mathrm{~mm} \mathrm{hr}^{-1 / 2}$
$K=10 \mathrm{~mm} / \mathrm{hr}$
Find
f and F at $t=1 \mathrm{hr}$
f and F at $t=4 \mathrm{hr}$ (end of storm)
Compute t_{p} :

$$
t_{p}=\frac{S^{2}(i-(K / 2))}{2 i(i-K)^{2}}=\frac{20^{2}(20-(10 / 2))}{2(20)(20-10)^{2}}=1.5 \mathrm{hr}
$$

Compute t_{0} :

$$
t_{0}=t_{p}-\frac{1}{4 K^{2}}\left(\sqrt{S^{2}+4 K F_{p}}-S\right)^{2}=1.5-\frac{1}{4(10)^{2}}\left(\sqrt{20^{2}+4(10)(1.5 \cdot 20)}-20\right)^{2}=0.5 \mathrm{hr}
$$

Find f and F at $t=1 \mathrm{hr}$:

$$
t<t_{p} \text { (Case 1: Supply Limited), therefore }
$$

$$
f(1)=i=20 \mathrm{~mm} / \mathrm{hr}
$$

$$
F(1)=i t=20(1)=20 \mathrm{~mm}
$$

Find f and F at $\mathrm{t}=4 \mathrm{hr}$:
$t>t_{p}$ (Case 2: Transport Limited), therefore

$$
\begin{aligned}
& f(t)=f^{*}\left(t-t_{0}\right)=f^{*}(4-0.5)=f^{*}(3.5) \\
& f(4)=\frac{1}{2}(20)(3.5)^{-1 / 2}+10=15.35 \mathrm{~mm} / \mathrm{hr} \\
& F(4)=(20)(3.5)^{1 / 2}+10(3.5)=72.42 \mathrm{~mm} / \mathrm{hr}
\end{aligned}
$$

