
Algorithm for zero-crossing detector frequency determination
David R. Andersen
November 11, 2005

Here's a quick summary of the best zero-crossing algorithm that I've seen for decoding
NRZI-encoded Bell 202 data. It uses TMR0 to determine the real-time state of the
incoming frequency in the ISR. The frequency of the incoming wave is updated by the
ISR at each zero-crossing.

Independently in the main code, TMR1 is used to time a bit-determination period. The
frequency information is sampled once per bit period (although not always at the same
point in the bit period), and NRZI bits are rolled into your packet buffer based on the
TMR1 loop samples.

ISR Code:

Use TMR0 to count time between zero crossings. Use the RBIE interrupt facility to
determine every state change on the input pin. The input pin can be any of pins PORTB,
4 or 5 or 6 or 7. Assume you use PORTB, 4. Thus, the ISR would look something like
this:

Watch for change on e.g. PORTB,4 – when change occurs, the RBIE fires and you
enter the ISR – which executes as follows:

1. On change, compare TMR0 count to the count corresponding to 1700 Hz.

a. If the count is greater, set TONE=LOW
b. If the count is less, set TONE=HIGH

2. Clear TMR0
3. Return from ISR

What this gives you is a register TONE that has the current real-time frequency
information in it. TONE will be updated at each zero-crossing, independent of the bit
period. The ISR should be written in assembly language for fastest execution.

Main Code:

Once each bit period, check TONE to see if it has changed state from the last bit period.
If it has, roll a 0 into your buffer. If it has not, roll a 1 into your buffer. The attached
flow chart shows one algorithm that can be used to determine the bit stream coming from
your input signal. It uses TMR1 to create a time window in which to determine whether
the input frequency has changed or not. If the time window runs out without a change in
frequency, a 1 is returned, and if a change in frequency occurs before timeout, a 0 is
recorded (NRZI).

Then go ahead and work the HDLC decode magic on your buffer, keeping track of bit-
stuffing, FCS, etc.

Tone = 0?

prev_tone
= 0?

prev_tone
= 0?

TMR1_flag
set?toggle prev_tone

set TMR1 to
1.5 bit periods

clr TMR1_flag

set TMR1 to
1 bit periods

clr TMR1_flag

return 0 return 1

Start

no
no

noyes

yes
yes

no

yes

Bell 202 zero-crossing detector.
There are three flags used. Tone is
the instantaneous tone, prev_tone is
the tone from the previous bit period,
and TMR1_flag is the overflow flag for
TMR1. TMR1 is a counter set to
overflow in 1 or 1.5 bit periods as
shown in the flowchart.

The flag Tone is assumed to be
instantaneously updated (presumably by
an ISR) at each zero-crossing with the
frequency of the tone segment that was
present immediately prior to that zero-
crossing.

