Engineering Economy Review

John D. Lee Industrial Engineering

Main concepts

- Models are approximations of reality (THINK)
- Time value of money, cash flow diagrams, and equivalence
- Comparison of alternatives
- Depreciation, inflation, and interest rates

2

Suggestions for solving problems

- Lookup unfamiliar terms in the index
- Draw cash flow diagrams
- Identify P, A, F, i
- Be flexible in using equations and tables
- Check with alternate methods

3

Cash flows

- Cash flows describe income and outflow of money over time
- Disbursements =outflows "-"
- Receipts =inflows "+"
- Beginning of first year is traditionally defined as "Time. 0"

4

Equivalence

- Translating cashflows over time into common units
- Present values of future payments
- Future value of present payments
- Present value of continuous uniform payments
- Continuous payments equivalent to present payment

5

Single Payment Compound Interest

- P= (P)resent sum of money
- i= (i)nterest per time period (usually years)
- MARR=Minimal Acceptable Rate of Return
- n= (n)umber of time periods (usually years)
- F=(F)uture sum of money that is equivalent to P given an interest rate i for n periods

■ $F=P(1+i)^n$ $P=F(1+i)^{-n}$

 $\blacksquare F=P(F/P,i,n) \qquad \qquad _{_{6}}P=F(P/F,i,n)$

Bank example

- You 1000 deposit
- 12% per year
- 5 years
- How much do you have at end if compounded vearly?
- How much do you have at end if compounded monthly?

-

5.47 Income from savings

- \$25,000 deposited
- Account pays 5% compounded semiannually
- Withdrawals in one year and continuing forever
- Maximum equal annual withdrawal equals?

8

5.47 Capitalized cost problem

- P=25,000
- A=?
- **■** r=5%

■ A=iP

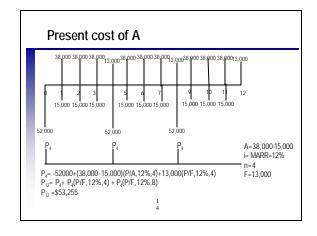
Key points to remember

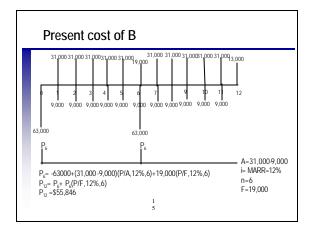
- Time value of money
 - \$1000 today is not the same as \$1000 one hundred years from now
 - Money in the future is worth less than present sums
- Cash flow diagrams
 - Starts at year zero
 - Superposition to convert to standard forms
- Equivalence
 - Functional notation, F=P(F/P,i,n)
 - i and n must match units
 - · Capitalized cost, A=Pi, P=A/i

1

Comparison of alternatives

- Present/Future worth
- Cash flow
- Rate of return
- Cost benefit
- Payback period
- Breakeven analysis


1


Present/Future worth

- Determine time period for analysis, least common multiple
- Calculate present value for each alternative
 - Draw cashflow diagram
 - Identify/calculate A, i, P, F, n
 - Use present value equations to determine P
- Compare costs

2

Machine A Machine B Purchase cost=\$52,000 \$63,000 Annual cost=\$15,000/year \$9,000/year Annual benefit= \$38,000/year \$31,000 /year Salvage value= \$13,000 \$19,000 Useful life= 4 years 6 years

Cash flow analysis

- Determine time period for analysis: common multiple OR continuing operation then doesn't require least common multiple
- Calculate annual cost/benefit/profit for each alternative
 - Draw cashflow diagram
 - · Identify/calculate A, S, i, P, F, n
 - Use uniform payment equations to determine A
- Compare annual costs

1

Cash flow analysis

- Provides a shortcut for long/infinite analysis periods or when least common multiple might be a long time period with lots of calculations
- Compare on the basis of annual cost if EITHER
 - Common multiple (e.g., 2 years and 8 years)

OR

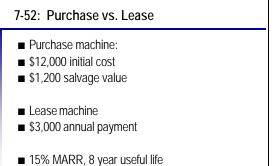
 Continuing operation (e.g., business will keep operating indefinitely with ability to replace equipment)

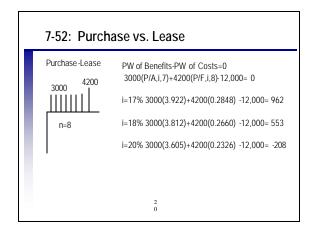
1

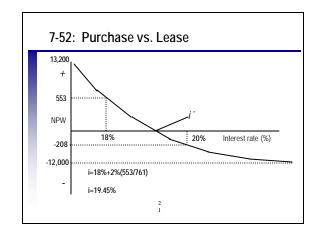
Rate of return analysis

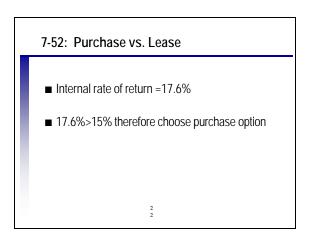
- Draw cash flow diagram of each alternative
- Draw combined cash flow diagram

(higher initial cost- lower initial cost)

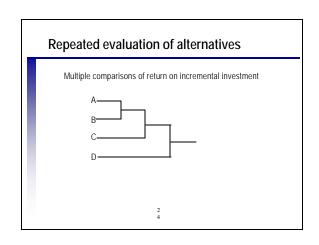

■ Convert to Present worth and Present costs


OR


Convert to EUAB and EUAC


- Write equation
- Solve for *i*
- If ROR≥MARR, choose higher-cost alternative

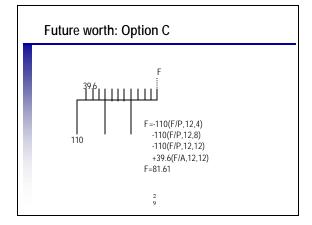
1

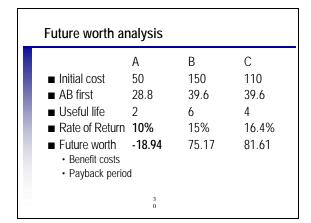


Evaluation of multiple alternatives ■ Identify all alternatives ■ Compute rate of return of all alternatives • Delete alternatives with a return< MARR ■ Arrange remaining alternatives in order of increasing investment (find alternative where investing component dominates) ■ Evaluate first two alternatives ■ Repeat evaluation until all alternatives have been evaluated

General suggestions

- Think about alternatives
 - i<0
 - i=0
 - A=Pi when salvage value equals initial cost
 - P=Ai = Capitalized cost
 - Infinite analysis period EUAB-EUAC=NPWi
- Consider using Present Worth AND EUAB to frame rate of return calculation


Payback period analysis


- Approximate rather than exact calculation
- All costs and profits are included without considering their timing
- Economic consequence beyond payback period are ignored (salvage value, gradient cash flow)
- May select a different alternative than other methods
- Focus is speed versus efficiency

Benefit cost ratio

- Benefit cost ratio analysis
 - (PW of benefit/PW of cost ≥ 1)
 - Compare incremental investment, similar to rate of return analysis

9.9 Three alternatives				
	А	В	С	
■ Initial cost	50	150	110	
■ AB first	28.8	39.6	39.6	
■ Useful life	2	6	4	
■ Rate of Return	10%	15%	16.4%	
■ Compare using	MARR=12°	%		
 Future worth 				
 Benefit cost 				
 Payback period 	d			
	2 8			

Benefit-cost ratio analysis							
Year	С	А	C-A				
0	-110	-50	-60				
1	39.6	28.8	10.8				
2	39.6	28.8-50	60.8				
3	39.6	28.8	10.8				
4	39.6	28.8	10.8				
Present worth	h of Cost=60						
Present work of benefit=10.8(P/A,12,4)+50(P/F,12,2)							
B/C=72.66/60		(, , , ,	, , , ,				
Reject A	3 1						

Year	В	С	B-C
0	-150	-110	-60
1-4	39.6	39.6	0
4	0	-110	110
5-6	39.6	39.6	0
6	-150	0	-150
7-8	39.6	39.6	0
8	0	-110	110
9-12	39.6	39.6	0

Benefit-cost ratio analysis

- PW of cost=40+150(P/F,12%,6)
- PW of cost=115.99
- PW of benefits= 110(P/F,12%,4)+110(P/F,12%,8)
- PW of benefits=114.33
- B/C=114.33/115.99<1
- Reject B

Payback period

- A 50/28.8 = 1.74 years B 150/39.6= 3.79 years
- C 110/39.6= 2.78 years
- Select A

Summary

	Α	В	С
Initial cost	50	150	110
■ AB first	28.8	39.6	39.6
■ Useful life	2	6	4
■ Rate of Return	10%	15%	16.4%
■ Future worth	-18.94	75.17	81.61
■ Benefit cost	C-A	=1.21 B-0	C=0.98
■ Payback period	11.74	3.79	2.78
	3		

Motor comparison

•						
	Graybar	Blueball				
Initial cost	\$7,000	\$6,000				
■ Efficiency	89%	85%				
Maintenance	300/year	300/year				
■ Electricity cost \$	\$0.072/kW-hour					
■ 200 hp						
■ 20 year useful life, No salvage value						
■ Interest rate =10	■ Interest rate =10%					
■ Hours used to j	ustify expense					

Motor comparison

- Graybar-Blueball>0
- NPC of Graybar-Blueball= 1000+(300-300)+

(P/A,10%,20)200*0.746kW/hp*0.072\$/kWhr*HRS(1/0 .89)-

(P/Á,10%,20)200*0.746kW/hp*0.072\$/kWhr*HRS(**1/0.85**)

- 1000= 8.514*0.568*HRS
- 206.7 hrs

7

Key points to remember

- Present/Future worth
 - · Use least common multiple
- Cashflow
- · Useful for infinite analysis periods
- Rate of return
 - · Do not use rate of return, but incremental rate of return as criterion
 - · Set up cash flow as investment
- Cost benefits
- · Use incremental comparison similar to rate of return analysis
- Payback period
 - Approximate method that makes huge assumptions
- Breakeven analysis

3

Interest rates, depreciation, and inflation

- Concepts that allow more precise modeling of economic decisions
- Nominal vs effective
- Depreciation
 - Straight line
 - MACRS (Modified Accelerated Cost Recovery System)
 - Book value
- Inflation moderates value of rate of returns

9

Nominal and effective interest rates

Effective interest rate, i_p, (period of compounding=period of interest) is used in formulas:

$$i=i_{p}=(1+i_{s})^{m}-1$$

$$i=i_p=(1+r_p/m)^m-1$$

i_s=interest per subperiod

m=number of subperiods in period P

r_p=nominal interest per period P

Nominal interest rate, r_p=m X i_s

Continuous compounding: $i_a = e^r - 1$

$$F = P(1 + i_a)^n = P_4^* e^m$$

Depreciation

- Depreciation basis=
 Initial cost(C)- Salvage value (S)
- Book value = C-Accumulated depreciation
- Straight line depreciation
 - D_i=(C-S)/n
 - n= service life
- MACRS
 - D_i =C X Factor from table

4

Methods for depreciation

- Book value=cost-depreciation charges
- Straight line (SL)
 - Same amount each year
 - Proportional to years of useful life and (initial costsalvage)
- Sum-of-years (SOYD)
 - · Initial rate is faster than SL
 - Proportional to sum of digits in useful life and (initial cost-salvage)

2

Methods for depreciation

- Declining balance, double declining balance (DDB)
 - Double declining = 200% of straight line
 - Proportional to years of useful life and book value
 - Salvage value not considered
- Declining balance/conversion to straight line (DDB/SL)
 - Optimal switch year CANNOT be determined from a simple comparison of depreciation schedules
- Unit of production (UOP)
- Modified Accelerated Cost Recovery System (MARCS) ⁴₃

Depreciation calculations								
Method Straight line		ok value (year J) P- (P-S) J/N						
SOYD	(P-S)[(N-J+1)/(N(N+1)/2)]	P-sum of dep.						
DDB	2(Book value)/N 2P/N(1 -2/N) ⁻¹	P-P(1-(1-2/N) ^j)						
UOP	(P-S)Prod. in year/Total prod.	P-sum of dep.						
MARCS	Table lookup (Property class.	vear) P-sum of dep.						

Depreciation of machine

- Initial cost of \$50,000
- Salvage value of \$10,000
- Service life of 10 years
- Straight line depreciation=
- $\blacksquare d_n = (P-S)/N$
- $\mathbf{d}_{n} = (50,000-10,000)/10$
- \blacksquare d_n =4,000/year

5

10.3 Capsulating machine

- Initial cost= \$76,000
- Five year useful life
- No salvage value
- Find depreciation schedule
 - Straight line
 - Sum of years digits
 - Double declining balance
 - DDB with conversion

4

10.3 Straight line

Year	Dep/year P-S/N	Cumulative Dep
0	0	0
1	76,000/5=15,200	15,200
2	15,200	30,400
3	15,200	45,600
4	15,200	60,800
5	15,200	76,000
	4 7	

10.3 Sum of year digits

Year		Cumulative Dep
0	(P-S)[(N-J+1)/(N(N+1)/2)	0
0	76,000(5)/15 =25,33	· ·
2	20,267	45,600
3	15,200	60,800
4	10,133	70,933
5	5,067	76,000
	4 8	

10.3 Double declining balance

Year	Dep/year Cur 2P/N(1-2/N) ⁺¹ OR 2/N(Cost-cumulative dep)	mulative Dep
0	0	0
1	76,000(2/5)=30,400	30,400
2	(76,000-30,400)(2/5)=18,240	48,640
3	10,944	59,584
4	6,566	66,150
5	3,940	70,090
	4 9	

10.3 Summary of depreciation schedules

Year	SL	SOYD	DDB
1	15,200	25,333	30,400
2	15,200	20,267	18,240
3	15,200	15,200	10,944
4	15,200	10,133	6,566
5	15,200	5,067	3,940

What is best year to switch from DDB to SL depreciation?

5

Straight line depreciation if DDB has been used in previous years

- Book value in year three for DDB =
- \blacksquare 76,000 30,400 18,240 = 27,360
- SL depreciation = Book value/ remaining useful life

Switch year BV SL dep 3 27,360 27,360/3= 9,120<10,940 from DDB 4 16,416 8,208> 6,566 5 9,850 9,850

Inflation

- Interest rate adjusted for computing present worth and other values
- Increases the value of the MARR to account for loss in value of future dollars due to inflation
- Inflation adjusted interest rate = i + f + if
- f= rate of inflation

5

13.33 Value of a 10,000 investment

- Interest rate 10%
- General price inflation is projected to be:
 - 3% for next 5 years
 - 5% for five years after that
 - 8% for following five years
- Calculate future worth of investment:
 - · in terms of actual dollars
 - in terms of real dollars at that time
 - real growth in purchasing power

5

13.33 Value of a 10,000 investment

- A) Future value of actual \$ =10,000 (F/P,10%,15)= \$41,770
- B) Future value in real \$, constant value =41,770 (P/F,8%,5)(P/F,5%,5)(P/F,3%,5) 0.6806 0.7835 0.8626

=19,213

■ C) Real growth rate of investment =19213=10,000(1+i) 15 =4.45%

Alternate solution solving for real dollars

- Use real rather than market interest rate
- Real interest rates; i'=(i f)/(1+f)
 - First five years: 6.796%
 - Second five years: 4.762%
 - Third five years: 1.9608%
- Real dollar value in 15 years
 - 10,000*(1.06796)⁵ *(1.04762)⁵ *(1.019608)⁵
 - 19 318

5

13.30 Comparison of alternatives with inflation

- 3 year lives with no salvage value
- Inflation = 5%
- Income tax rate of 25%
- Straight line depreciation
- MARR=7%
- Using rate of return analysis which is preferable?

5

13.30 Cash flow Year Α В 0 -420 -300 1 200 150 2 200 150 3 200 150

Year 0	A -420	Actual -420	Dep	Tax Ir	nc Tax	ATCF -420	ATCF Y09
1	200	210	140	70	-17.5	192.5	183.3
2	200	220.5	140	80.5	-20.1	200.4	181.8
3	200	231.5	140	91.5	-22.9	208.6	180.2

Cash flow for option B Year Α Actual Dep Tax Inc Tax ATCF ATCF Y0\$ 0 -300 -300 -300 -300 150 157.5 100 57.5 -14.4 143.1 136.3 165.4 100 65.4 -16.4 149.0 135.1 2 150 173.6 100 73.6 -18.4 155.2 134.1

Incremental ROR analysis A-B								
Year	Α	B Y0\$	A-B					
0	-420	-300	-120					
1	183.3	136.3	47					
2	181.8	135.1	46.7					
3	180.2	134.1	46.1					
NPW :		•	,1) +46.7(P/F,7%,2) + 46.1(P/F,7%,3) 7% choose more expensive alternative					
			6 0					