53:112 (58:112) Engineering Design Optimization
 Spring 2006; J.S. ARORA
 Project \#4: Nonlinear Optimization

Assigned: 18 April 2006
Due: 27 April 2006

Optimum Design of a Tripod

Design a minimum mass tripod of height $H=500 \mathrm{~mm}$ to support a vertical load $\mathrm{W}=60$ kN . The tripod base is an equilateral triangle with sides $B=1200 \mathrm{~mm}$. The struts have a hollow circular cross-section.

The axial stress in the struts must not exceed the allowable stress in compression, and the axial load in the strut P must not exceed the critical buckling load $P_{\text {cr }}$ divided by a safety factor FS $=2$. Use consistent units of Newtons and centimeters. The minimum and maximum values for the inner and outer diameters are $2.0 \leq D_{i} \leq 10 \mathrm{~cm} \mathrm{~m}$ and $2.5 \leq D_{0} \leq 10.5 \mathrm{~cm} \mathrm{~cm}$. Material properties are given as follows:

Material: aluminum alloy 2014- T6
Allowable compressive stress, $\sigma_{\mathrm{a}}=150 \mathrm{MPa}$
Young's modulus, $E=75 \mathrm{GPa}$
Mass density, $\rho=2800 \mathrm{~kg} / \mathrm{m}^{3}$
Formulate and solve the design optimization problem using a nonlinear programming algorithm such as in Excel Solver. Compare the solution with the graphical solution obtained in Project \#2. Submit a word-processed final report.

