A Mathematical Programming Model of the
Assembly Line Balancing Problem

DennisL. Bricker
Shuw-Hwey Juang

Department of Industrial Engineering
The University of lowa

Working Paper
November 1993

Abstract: (to be completed later)

Introduction

An assembly line consists of a series of M work stations, a ong which a product
moves. The product remains at each work station an amount of time C called the cycle time, during
which one or more tasks are performed, each with aknown performancetime. The assignment of the
tasks to the work stations should be done in a"balanced" way, i.e., thetotal of the performance times
of the tasks should be roughly the same at each work station. Restricting the assignment of atask to
awork station is the requirement that certain other tasks (predecessors) must be assigned to the same
or an earlier work station.

There are two common problems which are of interest. The assembly line balancing problem of
type 1 (ALBL1) isto minimize the number of work stations, given adesired cycletime. The assembly
line balancing problem of type 2 (ALB2), on the other hand, assumes the number of work stations to
be specified and attempts to minimize the cycletime (or equivaently, maximize the production rate) of
the assembly line.

Given:

I ={1,2,... N} = set of tasks to be assigned to work stations
T; = time required to complete task i, i1 |
P; = set of indices of the predecessors of task i
J={1,2,... M} = set of work stations
C=cycletime
Values must be selected for the decision variables
l'jj = 1if task i isassigned to station j,
0 otherwise
foralil landjT J and
Yj = 1if work station j is used,
0 otherwise
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foreachj1 J. Given any upper bound M on the number of work stations, the ALB1 objective,

then, is
M
Minimizeq Y] (0)
=1
The constraints of ALB1 are of severd varieties:

The sum of the performance times assigned to a station, if it is used, cannot exceed the cycletime:
aTmljecy; "l (1)
il

Each task must be assigned to exactly one station:
al ij = "l )

There are several ways to express the precedence constraints, e.g.,
i
€& I " il 1,pl P,andji J 3)
k=1

dueto Bowman| ], and

ailgediy " illandp P @
it it

due to Patterson and Albracht [ ]. We will state the precedence constraints as "paired precedence

cuts' (cf. Wilson, []). Consider p1 Pj, i.e, a task p which must be assigned either to the same

station astask i, or elseto an earlier station. For each work station j, we wish to eliminate the

possihility that task p is assigned to a station later than j and task i is assigned to astation j or earlier.

That is, we require that either task p is assigned to station j or earlier, or task i is assigned to station |

or later (or both). Thisisaccomplished by the constraint

J M
é-lpk+é. Iik31 "jTJ (5)
k=1 k=j+1

We can require that station j not be used unless al preceding work stations are used:

Yi£Yi" il M1 (6)
Finally,

Y;T {01} " 13, ()

151 {02} " il 1andjT J (8)

The Type 1 assembly line balancing problem, then, is defined by the objective (0) and the constraints
(1,2,5,6,7,8).
Change of Variable
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Asin [Bricker], we define the linear transformation

M
di=a li " il1&jT MM} ©)
k=j+1
and dio® 1& dim°0 " il I, (10)
which has the inverse transformation
I ij :di,j—l'dij " iT | & jT J (11)
This new set of variables may be defined as

j = 1if task i isnot assigned to one of the first j work stations,

¢
0 otherwise

The nonnegeativity of | i then, implies

dij.1-dij 3 0,i.e,1=diodjz3dix% -0 m-13 dim =0 (12)
and congtraint (5), rewritten as

(1- g. |pk)+ g I 1 " jT MM}

k=j+1 k=j+1

transforms into

(1-cy) +chj = Lie, dj2dy " jT MM}, il 1,&pl P (13)
Constraint (1) becomes

& Tlda-g)ecy; "ji g 14
il

Finaly, then, our mathematical programming model of the type 1 assembly line balancing problem is
M

Minimize Y| (0)
j=1

subject to

dijaddy " il 1&jT 3 (12)
dij2dy " jT MM}, il I, &pl P (13)
& Tldja-g)ecy; "jig 14
i

Yi£Yi" il M1 (6)
YT {01} " 13, (7
dio® Lm0, djT {01} " il 1&jT MM} (15)

L agrangian Relaxation
Suppose that we introduce Lagrangian multipliers m? 0, j T J, and relax constraints (14). The

Lagrangian function is
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M-1
av-a m[cv,--é Ti(di,j.l-di,-)]=é (L-C)Yj+ & & T(Mea-m)d;

iTd iTa il itd i1 i=0

and the Lagrangian relaxation is therefore
1

Ti(M1-m)d; (16)

o=

F(m) = Minimum § (1-Cm)y; + a
ita il
subject to (6), (7), (12), (13), and (15)
This problemis separablein Yj and djj, i.e., F(m) = Fy(m) + F g(m), where
Fy(m) = Minimum [§ (1-Cm)Y;8Y,£Y,.1.Y;1 {0.1}, jT J|

0

- 17)
iTJ
(a8 o 1172 a 6]
Fa(m = Min\a A Ti(ms1-m)dij6djq3 dj, dj® dy,djl {043" il 1,jl J &pl Plf (18)
it j=0
The evauation of Fy(n) is easy, with the minimum attained at
k
Yj=1forj £ argmir{k-Cé_ m} (19)
ji=1

which isthe solution of the LP relaxation of Fy (). Hence, Fy(n) exhibitsthe "Integrality
Property".

For any vector of Lagrangian multipliers, n# O, the optimal value of the Lagrangian relaxation,
F (m), isalower bound of the solution of the assembly line balancing problem. The Lagrangian dual

problem, namely

Maximize F (m) (18)
n#0

isthe problem of searching for the Lagrangian multipliers which yield the greatest lower bound.
Depending upon the size of the duality gap, thislower bound might prove useful in a branch-and-

bound algorithm for obtaining the optimal solution of the assembly line balancing problem.

Network Structure of the Relaxation

Note that constraints (12) and (13) have at most two nonzero coefficients, namely +1 and/or
-1, after dip=1 and dj)y=0 have been substituted. Inthe dua of the LP relaxation of F 4(m), then,
each column will also exhibit this property. By adding a redundant row, obtained by negating the
sum of all the original rows, one obtains a matrix having exactly two nonzero elements (+1 and -1),
which is acharacteristic of anode-arc incidence matrix. Therefore, the dua of the LP relaxationis
equivalent to aminimum cost network flow problem. This has several important implications:

a) For eachn? 0, the evaluation of F 4(n) isrelatively easy, using any of severa efficient

network algorithms.
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b) Theoptimal values of djj, which are the dual variables for the network problem, are integer-
valued, because of the total unimodularity of the node-arc incidence matrix. That is, F g(m
also exhibits the "Integrality Property”.

¢) Hencethe Lagrangian relaxation F (n) exhibits the "Integrality Property", which implies that
the maximum value of F (m) isequal to the optimal value of the LP relaxation of the
problem (cf. [Fisher]).

Although the greatest lower bound provided by F (m) can be no better than that provided by the value
of the LP relaxation of (0,12,13,14,15), the search for the optimal mmay be more efficient than
applying the simplex algorithm to the L P relaxation, due to the size of the problem.

Thenetwork hasM “ N + 1 nodes, one for each pair (i,j), il | andji J, plusthe node (0)
introduced by the redundant constraint. The supply (demand if negative) of commodity at each node
(i,j) isTi(m+1-m), and for node (0), the quantity (1-S; m) which, as noted previously, can be
assumed to be positive.

The arcs of the network are asfollows:

For eachil 1 andj=2,3,...M, there will be an arc from node (i j-1) to node (ij). There will be
(M-1)" N arcsof thistype.

For eachil I, pl Pj, and j=2,3,...M, there will be an arc from (i,j-1) to (p,j). Thetotal
number of arcs, then, is

M (N+1)" & |P|
i
arcs, where |P;| isthe cardinality of theset P;.  Suppose, for example, that there are M=100 tasks to
be assigned to N=9 work stations, and that the number of precedence restrictions S|P;| is 200. Then
the network will have 1000 nodes and 200,000 arcs. While this may seem large, it is very efficiently
solved by state-of-the-art implementations of the primal simplex method.
Example

Consider avery small example, with 3 work stations and 5 tasks:
TaSK  PRED. DURATION

F— 026
B — (5)
C 4B

> (88

E C.D
The solutions of the prablem (0), (1), (2), (3), (7), and (8) and its L P relaxation are, respectively,

LS e R |
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N=3, Y 1=Y5=Y5=1,Y 4=0
I a1=1, I a2=l as=l A4=0,
| 81=0,! g2=1, | 3= B4=0,
| 1=l =0, ca=1,| c4=0
| p1=0,I p2=1, p3=I ps=0,

| g1=1 £2=0,1 g3=1, | g2=0

N=2.6, Y1=Y,=Y3=Y,=0.65

I a1=l a2=l A=l A4=]/4,

| 81=Y4. 85234, | 3= B4=0,
' 01221/4’I c2=0l 03:3/4,| ca=0
! Dl:]/4’I p2=| p3=0,| D4=3/4,

| g1=I E2=]/41| £3=0, | E4=]/2

Eleven branches and 84 pivots were required by LINDO to solve the integer problem. A Gantt chart
of the integer solution is shown below.

B
C
E' Station Station
: #1 #2
R S B B B T T T T T T 11

r111 1111112
0123456 7890123456 73910

If congtraint (5) replaces congtraint (3), the L P relaxation has the solution

N=2.6, Y 1=Y,=1,Y 5=Y4=0.3

| A1=0.125, o,=0.660714,] A5=0.214286,1 54=0,
| B1=1,1 g2=I g3=I p4==0,

| c1=0,1 ¢2=0.785714, 5=0.214286,] c4=0

| p1=1,1 p2=I ps=I ps=0,

I 1= g2=1 £3=0, | g4=1

Theinteger solution is the same, but required only four branches and 49 pivots. Notice that only two
of the activities are split between stations, compared to al the activitiesin the previous L P relaxation.
The tableau for the LP relaxation of (12) through (15) is
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¥
1 2 3 4

+14+1+1+1

=

+1 -1
+1 -1

+1

+1 -1
+1 -1
+1

+1 -1
+1 -1
+1

+1 -1
+ -1

+1

+1
+1
+1

+1
+1
+1

+1
+1
+1

+1
+1
+1

+1
+1
+1

P 1o o [0 o P | o o o 1o Do o 1o Do o | ] D Do 1 1 | P P o 1 [ 1o o o 1 1 1 1o o 1o o o 1 Z

+1
-5 +8
-g9+8

+5
-5 +5
-5+5

+6
-6 +6
-G+6

+3
=3 +3
-3+ 3

+10
+10
0
10

-26

[ IV L L

-1
+1 -1
+1 -1
+1 -1

LT T P

where dijg=1 and dj3=0 have been substituted, redundant constraints have been eliminated, and

blank entries represent zeroes. The solutions of this LP relaxation and of the integer LP are
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c=87s, c=9,

da1=1, da,=0.20833, da1=da2=0,

dg1=dg>=0, dg1=1, dg2=0,

dc1=0.3888, dp=0, dcy=dc2=1,

dp1=dpy=1, dp1=1, dp2=0,| -- to be revised --
de1=deo=1, de1=deo=1,

It isinteresting to note the disparity between the integer solution and the solution obtained by
rounding the continuous solution.
The LP solution, in which tasks may be split between stations, is
-- to be added --
The LP relaxation of the objective (0) and constraints (1), (2), (4), & (6) hasthe solution

N=2.6, Y,=Y;=Y;=Y,=0.65

| a1=l A=l ao=l a=Ya,

| 51:]/4a| 82:3/4v | B3=I B4=0,
| 01:]/4,| c2=0,l 0323/4,| ca=0
lor=Yal o 001 0=, -- to be revised --
| g1=I E2:]/4,| e3=0, | E3:]/2

In this LP solution, aso, the tasks are split among the work stations:
-- to be added --

The dual of the LP relaxation of the above problem has the tableau

-- to be added --
Note the similarity of the above dual tableau to a node-arc incidence matrix, i.e., the (+1,-1) pair of
coefficientsin the columns. Suppose that we relax the constraints (14) by introducing Lagrangian
multipliersmy , mp, and my. Then the LP relaxation of the remaining problem, with dack variables
introduced to obtain equality constraints, will have columns having either a (+1,-1) pair, or a+1, or a
-1 asthe nonzero dements. Summing the equations and negating both sides will thereforeyield a
node-arc incidence matrix (having only (+1,-1) nonzero pairs in each column), drawn below:

-- to be added --
Here, the node labeled "S' corresponds to the redundant row which was added.
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