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Introduction

An assembly line consists of a series of M work stations, along which a product

moves.  The product remains at each work station an amount of time C called the cycle time, during

which one or more tasks are performed, each with a known performance time.  The assignment of the

tasks to the work stations should be done in a "balanced" way, i.e., the total of the performance times

of the tasks should be roughly the same at each work station.   Restricting the assignment of a task to

a work station is the requirement that certain other tasks (predecessors) must be assigned to the same

or an earlier work station.

There are two common problems which are of interest.  The assembly line balancing problem of

type 1 (ALB1) is to minimize the number of work stations, given a desired cycle time.  The assembly

line balancing problem of type 2 (ALB2), on the other hand, assumes the number of work stations to

be specified and attempts to minimize the cycle time (or equivalently, maximize the production rate) of

the assembly line.

Given:

I = {1,2,... N} = set of tasks to be assigned to work stations

Ti = time required to complete task i,  i ∈ I

Pi = set of indices of the predecessors of task i

J = {1,2,... M} = set of work stations

C = cycle time

Values must be selected for the decision variables

λij = 1 if task i is assigned to station j,

         0 otherwise

for all i ∈ I and j ∈  J, and

Yj = 1 if work station j is used,

        0 otherwise
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for each j ∈  J.  Given any upper bound M on the number of work stations, the ALB1 objective,

then, is

Minimize Yj∑
j=1

M

(0)

The constraints of ALB1 are of several varieties:

The sum of the performance times assigned to a station, if it is used, cannot exceed the cycle time:

Tiλij∑
i∈I

 ≤ CYj     ∀ j ∈ J (1)

Each task must be assigned to exactly one station:

λij∑
j∈J

 = 1     ∀ i ∈ I (2)

There are several ways to express the precedence constraints, e.g.,

λij  ≤ λpk∑
k=1

j

   ∀ i∈I, p∈Pi, and j∈J (3)

due to Bowman [ ], and

jλpj∑
j∈J

 ≤ jλij∑
j∈J

   ∀ i∈I and p∈Pi (4)

due to Patterson and Albracht [ ].  We will state the precedence constraints  as "paired precedence

cuts" (cf. Wilson, [ ]).  Consider  p ∈ Pi, i.e., a  task p which must be assigned either to the same

station as task i, or else to an earlier station.  For each work station j, we wish to eliminate the

possibility that task p is assigned to a station later than j and task i is assigned to a station j or earlier.

That is, we require that either task p is assigned to station j or earlier, or task i is assigned to station j

or later (or both).  This is accomplished by the constraint

λpk∑
k=1

j

 + λik∑
k=j+1

M

 ≥ 1    ∀ j ∈ J (5)

We can require that station j not be used unless all preceding work stations are used:

Yj ≤ Yj-1  ∀ j ∈ J\{1} (6)

Finally,

Yj ∈ {0,1}  ∀   j ∈ J, (7)

λij ∈ {0,1}  ∀  i ∈ I and j ∈ J (8)

The Type 1 assembly line balancing problem, then, is defined by the objective (0) and the constraints

(1,2,5,6,7,8).

Change of Variable
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As in [Bricker], we define the linear transformation

δij  = λik∑
k=j+1

M

   ∀ i∈I & j ∈J\{M} (9)

and δi0 ≡ 1 &  δiM ≡ 0   ∀  i ∈ I, (10)

which has the inverse transformation

λij  = δi,j-1 - δij      ∀ i∈I & j ∈J (11)
This new set of variables may be defined as

δij = 1 if task i is not assigned to one of the first j work stations,

        0  otherwise

The nonnegativity of λij, then, implies

δi,j-1 - δij  ≥ 0, i.e.,1 = δi0≥δi1≥δi2≥ δi,M-1≥δiM=0 (12)

and constraint (5), rewritten as

1 - λpk∑
k=j+1

M

 + λik∑
k=j+1

M

 ≥ 1    ∀ j ∈ J\{M}

 transforms into

1-δpj  +δij  ≥ 1, i.e.,  δij  ≥ δpj     ∀ j ∈ J\{M}, i∈I, & p∈Pi (13)

Constraint (1) becomes

Ti δi,j-1 - δij∑
i∈I

 ≤ CYj     ∀ j ∈ J (14)

Finally, then, our mathematical programming model of the type 1 assembly line balancing problem is

Minimize Yj∑
j=1

M

(0)

subject to

δi,j-1 ≥ δij     ∀  i ∈ I & j ∈ J (12)

δij  ≥ δpj     ∀ j ∈ J\{M}, i∈I, & p∈Pi (13)

Ti δi,j-1 - δij∑
i∈I

 ≤ CYj     ∀ j ∈ J (14)

Yj ≤ Yj-1  ∀ j ∈ J\{1} (6)

Yj ∈ {0,1}  ∀   j ∈ J, (7)

δi0  ≡ 1,δiM ≡ 0,  δij∈ {0,1}   ∀  i ∈ I & j ∈ J\{M} (15)

Lagrangian Relaxation

Suppose that we introduce Lagrangian multipliers  µj≥0, j ∈ J, and relax constraints (14).  The

Lagrangian function is
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Yj∑
j∈J

 - µj CYj- Ti δi,j-1 - δij∑
i∈I

∑
j∈J

 = 1-Cµj Yj∑
j∈J

+ Ti µj+1-µj δij∑
j=0

M-1

∑
i∈I

and the Lagrangian relaxation is therefore

Φ(µ) = Minimum 1-Cµj Yj∑
j∈J

 + Ti µj+1-µj δij∑
j=0

M-1

∑
i∈I

(16)

subject to (6), (7), (12), (13), and (15)

This problem is separable in Yj and δij, i.e., Φ(µ) = ΦY(µ) + Φδ(µ), where

ΦY(µ) = Minimum 1-Cµj Yj∑
j∈J

Yj≤Yj-1 ,Yj∈{0,1}, j∈J  (17)

Φδ(µ) = Min Ti µj+1-µj δij∑
j=0

M-1

∑
i∈I

δi,j-1 ≥ δij, δij ≥ δpj,δij ∈{0,1}∀ i∈I, j∈J,  & p∈Pi (18)

The evaluation of ΦY(µ) is easy, with the minimum attained at

Yj=1 for j ≤ argmin k-C µj∑
j=1

k

(19)

which is the solution of the LP relaxation of ΦY(µ).  Hence, ΦY(µ) exhibits the "Integrality

Property".

For any vector of Lagrangian multipliers, µ≥0, the optimal value of the Lagrangian relaxation,

Φ(µ), is a lower bound of the solution of the assembly line balancing problem.  The Lagrangian dual

problem, namely

Maximize
µ≥0

 Φ(µ) (18)

is the problem of searching for the Lagrangian multipliers which yield the greatest lower bound.

Depending upon the size of the duality gap, this lower bound might prove useful in a branch-and-

bound algorithm for obtaining the optimal solution of the assembly line balancing problem.

Network Structure of the Relaxation

Note that constraints (12) and (13) have at most two nonzero coefficients, namely +1 and/or

-1, after δi0=1 and δiM=0  have been substituted.  In the dual of the LP relaxation of Φδ(µ), then,

each column will also exhibit this property.  By adding a redundant row, obtained by negating the

sum of all the original rows, one obtains a matrix having exactly two nonzero elements (+1 and -1),

which is a characteristic of a node-arc incidence matrix.  Therefore, the dual of the LP relaxation is

equivalent to a minimum cost network flow problem.  This has several important implications:

a)  For each µ≥0, the evaluation of Φδ(µ) is relatively easy, using any of several efficient

network algorithms.
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b)  The optimal values of δij, which are the dual variables for the network problem, are integer-

valued, because of the total unimodularity of the node-arc incidence matrix.  That is, Φδ(µ)

also exhibits the "Integrality Property".

c)  Hence the Lagrangian relaxation Φ(µ) exhibits the "Integrality Property", which implies that

the maximum value of  Φ(µ) is equal to the optimal value of the LP relaxation of the

problem (cf. [Fisher]).

Although the greatest lower bound provided by Φ(µ) can be no better than that provided by the value

of the LP relaxation of (0,12,13,14,15), the search for the optimal µ may be more efficient than

applying the simplex algorithm to the LP relaxation, due to the size of the problem.

The network has M × N + 1  nodes, one for each pair (i,j), i∈I and j∈J, plus the node (0)

introduced by the redundant constraint.  The supply (demand if negative) of commodity at each node

(i,j) is Ti(µj+1-µj), and for  node (0), the quantity (1-Σ j µj) which, as noted previously, can be

assumed to be positive.

The arcs of the network are as follows:

For each i∈I and j=2,3,...Μ, there will be an arc from node (i,j-1) to node (i,j). There will be

(M-1) × N arcs of this type.

For each i∈I, p∈Pi, and j=2,3,...Μ, there will be an arc from (i,j-1) to (p,j).  The total

number of arcs, then, is

M × N+1  × Pi∑
i∈I

arcs, where |Pi| is the cardinality of the set Pi.   Suppose, for example, that there are M=100 tasks to

be assigned to N=9 work stations, and that the number of precedence restrictions Σ |Pi| is 200.  Then

the network will have 1000 nodes and 200,000 arcs.  While this may seem large, it is very efficiently

solved by state-of-the-art implementations of the primal simplex method.

Example

Consider a very small example, with 3 work stations and 5 tasks:

The solutions of the problem (0), (1), (2), (3), (7), and (8) and its LP relaxation are, respectively,

Assembly Line Balancing page 5 2/21/97



 

N=3, Y1=Y2=Y3=1,Y4=0

λA1=1, λA2=λA3=λA4=0,

λB1=0,λB2=1, λB3=λB4=0,

λC1=λC2=0,λC3=1,λC4=0

λD1=0,λD2=1,λD3=λD4=0,

λE1=λE2=0,λE3=1, λE4=0

     

N=2.6, Y1=Y2=Y3=Y4=0.65

λA1=λA2=λA3=λA4=1 4,

λB1=1 4,λB2=3 4, λB3=λB4=0,

λC1=1 4,λC2=0,λC3=3 4,λC4=0

λD1=1 4,λD2=λD3=0,λD4=3 4,

λE1=λE2=1 4,λE3=0, λE4=1 2

   

Eleven branches and 84 pivots were required by LINDO to solve the integer problem.  A Gantt chart

of the integer solution is shown below.

If constraint (5) replaces constraint (3), the LP relaxation has the solution

 

N=2.6, Y1=Y2=1,Y3=Y4=0.3

λA1=0.125,λA2=0.660714,λA3=0.214286,λA4=0,

λB1=1,λB2=λB3=λB4==0,

λC1=0,λC2=0.785714,λC3=0.214286,λC4=0

λD1=1,λD2=λD3=λD4=0,

λE1=λE2=λE3=0, λE4=1

The integer solution is the same, but required only four branches and 49 pivots.  Notice that only two

of the activities are split between stations, compared to all the activities in the previous LP relaxation.

The tableau for the LP relaxation of (12) through (15) is
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  where δi0=1 and δi3=0 have been substituted, redundant constraints have been eliminated, and

blank entries represent zeroes.  The solutions of this LP relaxation and of the integer LP are

Assembly Line Balancing page 7 2/21/97



C = 8 2 3 ,

δA1=1, δA2=0.20833,

δB1=δB2=0,

δC1=0.3888, δC2=0,

δD1=δD2=1,

δE1=δE2=1,

       

C = 9 ,

δA1=δA2=0,

δB1=1, δB2=0,

δC1=δC2=1,

δD1=1, δD2=0,

δE1=δE2=1,

  

 

-- to be revised --

It is interesting to note the disparity between the integer solution and the solution obtained by

rounding the continuous solution.

The LP solution, in which tasks may be split between stations, is

-- to be added --
 The LP relaxation of the objective (0) and constraints (1), (2), (4), & (6) has the solution

N=2.6, Y1=Y1=Y1=Y1=0.65

λA1=λA2=λA2=λA2=1 4,

λB1=1 4,λB2=3 4, λB3=λB4=0,

λC1=1 4,λC2=0,λC3=3 4,λC4=0

λD1=1 4,λD2=λD3=0,λD4=3 4,

λE1=λE2=1 4,λE3=0, λE3=1 2

     

-- to be revised --

In this LP solution, also, the tasks are split among the work stations:

-- to be added --

The dual of the LP relaxation of the above problem has the tableau

-- to be added --

Note the similarity of the above dual tableau to a node-arc incidence matrix, i.e., the (+1,-1) pair of

coefficients in the columns.  Suppose that we relax the constraints (14) by introducing Lagrangian

multipliers µ1 , µ2, and µ3.  Then the LP relaxation of the remaining problem, with slack variables

introduced to obtain equality constraints, will have columns having either a (+1,-1) pair, or a +1, or a

-1 as the nonzero elements.  Summing the equations and negating both sides will therefore yield a

node-arc incidence matrix (having only (+1,-1) nonzero pairs in each column), drawn below:

-- to be added --

Here, the node labeled "S" corresponds to the redundant row which was added.
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