\qquad

```
<><><><><><><><><><><>
57:022 Principles of Design II
    Quiz #1, January 26, 2000
<><><><><>><><><><>><><>
```

Indicate with true (+) or false (o):
\qquad 1. A random number with Pascal distribution is the sum of random variables each having the geometric distribution.
__ 2. The binomial distribution is a special case of the Pascal distribution.
__ 3. In a Bernouilli process, the number of "successes" in n trials $\left(\mathrm{N}_{\mathrm{n}}\right)$ has the Poisson distribution.
4. If W_{1} has the geometric distribution, then

$$
\mathrm{P}\left\{\mathrm{~W}_{1}=1\right\} \geq \mathrm{P}\left\{\mathrm{~W}_{1}=2\right\} \geq \mathrm{P}\left\{\mathrm{~W}_{1}=2\right\} \geq \ldots
$$

For some of the questions which follow, you may refer to the table below. Only 3 significant digits are needed.

The foreman of a casting section in a certain factory finds that, on the average, 1 in every 5 castings made is defective.
2. If the section makes 10 castings a day, what is the probability that exactly 2 of these will be defective?
6. What is the probability that 3 or more defective castings are made in one day?
7. What is the probability that the first two castings are both defective (assuming independence)?
8. What's the name of the probability distribution of the quality of casting \#8 (either $1=$ defective or $0=\mathrm{OK}$)?

Advertising states that, for a certain lottery ticket, "every fifth ticket carries a prize". If you buy ten tickets, what is...
9. the probability (numerical value) that you get exactly one winning ticket?
10. the probability (numerical value) that you get at least one winning ticket?

If, instead of deciding in advance how many tickets to buy, you continue buying tickets until you have a winning ticket...
11. What's the name of the probability distribution of the number of tickets you buy?

If you continue buying tickets until you have two winning tickets...
\qquad 12. What's the name of the probability distribution of the number of tickets you buy?

Some common probability distributions:

a. Bernouilli
b. Random
c. Binomial
d. Poisson
e. Geometric
f. Normal
g. Exponential
h. Erlang
i. Pascal

```
<><><><><><><><><><<><>
57:022 Principles of Design II
    Quiz #1, January 26, 2000
<><><><><><><><><><><>>
```

Indicate with true (+) or false (o):
$_ \pm$1. A random number with Pascal distribution is the sum of random variables each having the geometric distribution.
o 2. The binomial distribution is a special case of the Pascal distribution.
o 3. In a Bernouilli process, the number of "successes" in n trials $\left(\mathrm{N}_{\mathrm{n}}\right)$ has the Poisson distribution.
4. If W_{1} has the geometric distribution, then

$$
P\left\{W_{1}=1\right\} \geq P\left\{W_{1}=2\right\} \geq P\left\{W_{1}=2\right\} \geq \ldots .\left(\text { true, since } p \geq(1-p) p \geq(1-p)^{2} p \geq \ldots \text { for } 0 \leq p \leq 1\right)
$$

For some of the questions which follow, you may refer to the table below. Only 3 significant digits are needed.

The foreman of a casting section in a certain factory finds that, on the average, 1 in every 5 castings made is defective.
-0.302 5. If the section makes 10 castings a day, what is the probability that exactly 2 of these will be defective?
$\ldots 0.322$ _ 6 . What is the probability that 3 or more defective castings are made in one day?
0.04_ 7. What is the probability that the first two castings are both defective (assuming independence)?
_Bernouilli_8. What's the name of the probability distribution of the quality of casting \#8 (either $1=$ defective or $0=\mathrm{OK}$)?

Advertising states that, for a certain lottery ticket, "every fifth ticket carries a prize". If you buy ten tickets, what is...
_0.268 _ 9. the probability (numerical value) that you get exactly one winning ticket?
_ 0.0892 10. the probability (numerical value) that you get at least one winning ticket?
If, instead of deciding in advance how many tickets to buy, you continue buying tickets until you have a winning ticket...
_Geometric_11. What's the name of the probability distribution of the number of tickets you buy ?
If you continue buying tickets until you have two winning tickets...
Pascal 12. What's the name of the probability distribution of the number of tickets you buy?
Some common probability distributions:
a. Bernouilli
b. Random
c. Binomial
d. Poisson
e. Geometric
f. Normal
g. Exponential
h. Erlang
i. Pascal (= negative binomial)
\qquad

 57:022 Principles of Design II - Quiz \#2
 Wednesday, February 2, 2000

Part I. Along highway I-80 in Iowa, the probability that each passing car stops to pick up a hitchhiker is $\mathrm{p}=2 \%$, i.e, an average of one in fifty drivers will stop; different drivers, of course, make their decisions whether to stop or not independently of each other.

1. Consider a stochastic process in which $X_{n}=1$ if car n stops to pick up the hitchhiker, and $X_{n}=0$ otherwise. Then $\left\{X_{n}: n=1,2,3, \ldots\right\}$ is a
a. Binomial process
b. Bernouilli process
c. Poisson process
d. Markov process
e. Exponential process
f. None of the above
2. $P\left\{X_{n}=1\right\}=$
a. 0.50
b. 0.98
c. 0.025
d. 0.02
e. 0.2
f. None of the above
3. If 25 cars pass the hitchhiker, the probability that none of them stop is
a. $25 \mathrm{x}(0.02)$
b. $(0.02)^{25}$
c. $(0.98)^{25}$
d. $(0.98)^{24}(0.02)$
e. $(0.02)^{24}(0.98)$
f. None of the above
4. Given that a hitchhiker has counted 25 cars passing him without stopping, what is the probability that he will be picked up by the $30^{\text {th }}$ car or before?
a. $(0.98)^{30}$
b. $1-(0.98)^{5}$
c. 1-(0.02) ${ }^{30}$
d. $1-(0.02)^{5}$
e. $(0.98)^{5}$
f. None of the above

Suppose that the arrivals of the cars form a Poisson process, at the average rate of 15 per minute. Define "success" for the hitchhiker to occur at time t provided that both an arrival occurs at t and that car stops to pick him up. Let T_{1} be the time (in seconds) of the first "success", i.e., the time that he finally gets a ride, when he begins his wait at time $\mathrm{T}_{1}=0$.
5. The arrival rate of "successes" is
a. 1/minute
b. 3/minute
c. 2/minute
d. $0.3 /$ minute
e. $0.2 /$ minute f. None of the above
6. The random variable T_{1} has what distribution?
a. Poisson
b. Geometric
c. Exponential
d. Pascal
e. Erlang
f. None of the above
7. What is $\mathrm{E}\left(\mathrm{T}_{1}\right)$, the expected (mean) value of T_{1} ?
a. $10 / 3$ minutes
b. 3 minutes
c. 4 minutes
d. $3 / 2$ minutes
e. $1 / 3$ minute
f. None of the above
8. What's the probability that his waiting time is less than or equal to $5 \mathrm{~min} .\left(\mathrm{P}\left\{\mathrm{T}_{1} \quad 5\right\}\right.$?
a. $1-\mathrm{e}^{-4.5}$
b. $1-\mathrm{e}^{-1.5}$
c. $\mathrm{e}^{-1.5}$
d. $e^{-4.5}$
e. 1 - $\mathrm{e}^{1.5}$
f. None of the above
9. What is the probability that he must wait exactly 5 minutes for a ride $\left(\mathrm{P}\left\{\mathrm{T}_{1}=5\right\}\right.$?
a. $1-\mathrm{e}^{-1.5}$
b. $e^{-1.5}$
c. $\mathrm{e}^{4.5}$
d. $1-\mathrm{e}^{-4.5}$
e. 0.0
f. None of the above
10. Suppose that after 3 minutes (during which 42 cars have passed by) he is still there waiting for a ride. What is the conditional expected value of T_{1} (expected total waiting time, i.e., since time 0 , given that he has already waited 3 minutes).
a. $10 / 3$ minutes
b. $3 / 10$ minutes
c. 15 minutes
d. $40 / 3$ minutes
e. 3/40 minutes
f. None of the above
\qquad

Vehicles arrive at a toll booth on the freeway at the average rate of $6 /$ minute in a completely random fashion. The vehicles are counted and arrival times are recorded, beginning at 12:00 noon. Ninety percent of the vehicles are cars, while the remainder are trucks, buses, etc.

Write the alphabetic letter corresponding to the name of the probability distribution which each of the following random variables has. Warning: some distributions may apply in more than one case, while others not at all!
___ 1. time of arrival of the first vehicle

- 2. time of arrival of vehicle \#2

3. time between arrivals of vehicle \#1 and vehicle \#2
4. number of vehicles arriving during the first 5 minutes
5. vehicle \# of the first vehicle which is not a car.
6. the number of cars among the first 10 vehicles to arrive
7. the vehicle \# of the second vehicle which is not a car.
8. an indicator for vehicle \#n which is 1 if a car, 0 otherwise.

Probability distributions:

A. Bernouilli
B. Erlang
E. Geometric
C. Poisson
F. Exponential
D. Binomial
G. Pascal
H. Normal

57:022 Principles of Design II - Quiz \#2 Solutions
 Wednesday, February 2, 2000

Part I. Along highway I-80 in Iowa, the probability that each passing car stops to pick up a hitchhiker is $\mathrm{p}=2 \%$, i.e, an average of one in fifty drivers will stop; different drivers, of course, make their decisions whether to stop or not independently of each other.

1. Consider a stochastic process in which $X_{n}=1$ if car n stops to pick up the hitchhiker, and $X_{n}=0$ otherwise. Then $\left\{X_{n}: n=1,2,3, \ldots\right\}$ is a
a. Binomial process
b. Bernouilli process
c. Poisson process
d. Markov process
e. Exponential process
f. None of the above
2. $\mathrm{P}\left\{\mathrm{X}_{\mathrm{n}}=1\right\}=$
a. 0.50
b. 0.98
c. 0.025
d. 0.02
e. 0.2
f. None of the above
3. If 25 cars pass the hitchhiker, the probability that none of them stop is
a. $25 \mathrm{x}(0.02)$
b. $(0.02)^{25}$
c. $(0.98)^{25}$
d. $(0.98)^{24}(0.02)$
e. $(0.02)^{24}(0.98)$
f. None of the above
4. Given that a hitchhiker has counted 25 cars passing him without stopping, what is the probability that he will be picked up by the $30^{\text {th }}$ car or before?
a. $(0.98)^{30}$
b. 1-(0.98) ${ }^{5}$
c. $1-(0.02)^{30}$
d. 1-(0.02) ${ }^{5}$
e. $(0.98)^{5}$
f. None of the above

Note: This is 1 minus the probability that 5 consecutive cars do not stop!
Suppose that the arrivals of the cars form a Poisson process, at the average rate of 15 per minute. Define "success" for the hitchhiker to occur at time t provided that both an arrival occurs at t and that car stops to pick him up. Let T_{1} be the time (in seconds) of the first "success", i.e., the time that he finally gets a ride, when he begins his wait at time $\mathrm{T}_{1}=0$.
5. The arrival rate of "successes" is
a. 1/minute
b. 3/minute
c. 2/minute
d. 0.3/minute
e. 0.2/minute
f. None of the above
6. The random variable T_{1} has what distribution?
a. Poisson
b. Geometric
c. Exponential
d. Pascal
e. Erlang
f. None of the above
a. $10 / 3$ minutes
b. 3 minutes
c. 4 minutes
d. $3 / 2$ minutes
e. $1 / 3$ minute
f. None of the above
8. What's the probability that his waiting time is less than or equal to 5 min . $\left(\mathrm{P}\left\{\mathrm{T}_{1} \leq 5\right\}\right.$?
a. $1-\mathrm{e}^{-4.5}$
b. $1-\mathrm{e}^{-1.5}$
c. $\mathrm{e}^{-1.5}$
d. $\mathrm{e}^{-4.5}$
e. $1-\mathrm{e}^{1.5}$
f. None of the above
e $\quad 9$. What is the probability that he must wait exactly 5 minutes for a ride $\left(\mathrm{P}\left\{\mathrm{T}_{1}=5\right\}\right.$?
a. $1-\mathrm{e}^{-1.5}$
b. $\mathrm{e}^{-1.5}$
c. $\mathrm{e}^{4.5}$
d. $1-\mathrm{e}^{-4.5}$
e. 0.0
f. None of the above
10. Suppose that after 3 minutes (during which 42 cars have passed by) he is still there waiting for a ride. What is the conditional expected value of T_{1} (expected total waiting time, i.e., since time 0 , given that he has already waited 3 minutes). Choose NEAREST value:
a. 3 minutes
b. 4 minutes
c. 5 minutes
d. 6 minutes (6.3333)
e. 7 minutes

Vehicles arrive at a toll booth on the freeway at the average rate of $6 /$ minute in a completely random fashion. The vehicles are counted and arrival times are recorded, beginning at 12:00 noon. Ninety percent of the vehicles are cars, while the remainder are trucks, buses, etc.

Write the alphabetic letter corresponding to the name of the probability distribution which each of the following random variables has. Warning: some distributions may apply in more than one case, while others not at all!

F-	1. time of arrival of the first vehicle
B	2. time of arrival of vehicle \#2
F-	3. time between arrivals of vehicle \#1 and vehicle \#2
C	4. number of vehicles arriving during the first 5 minutes
E	5. vehicle \# of the first vehicle which is not a car.
D	6. the number of cars among the first 10 vehicles to arrive
G	7. the vehicle \# of the second vehicle which is not a car.
A	8. an indicator for vehicle \#n which is 1 if a car, 0 otherwise

Probability distributions:

A. Bernouilli
B. Erlang
E. Geometric
C. Poisson
F. Exponential
D. Binomial
G. Pascal
H. Normal
\qquad

57:022 Principles of Design II - Quiz \#3
Wednesday, February 9, 2000

True (+) or False (o)?
__ 1. The rejection method to generate a random number can be used to simulate a random variable having a Normal distribution.
__ 2. The density function evaluated at the "mode" of a probability distribution is 50%.
__ 3. The maximum value of the cumulative distribution function is 1 .
_- 4. The maximum value of the density function for a random variable is 1 .
__ 5. The inverse transformation method to generate a random number can be used to simulate a random variable having a triangular distribution
__ 6. The inverse transformation method requires as input a single random number in the interval $[0,1]$.
_- 7. The rejection method requires as input a single random number in the interval $[0,1]$.
__ 8. If we wanted to simulate a random variable with 2-Erlang distribution, we might generate two random numbers having the exponential distribution and sum them.
_- \quad. The rejection method to generate a random number can be used to simulate a random variable having an exponential distribution.
10. The "Cumulative Distribution Function" (CDF) of a random variable X is
a. $f(x)=P\{x \mid X\}$
b. $F(x)=P\{X \geq x\}$
c. $f(x)=P\{x\}$
d. $F(x)=P\{X \leq x\}$
e. $F(x)=P\{X=x\}$
f. $f(x)=P\{X \mid x\}$

We wish to generate some random numbers having an exponential distribution as the inter-arrival times (where the average is 5 minutes.) Suppose that a procedure for generating uniformly-distributed random numbers has yielded the value $\mathrm{R}=0.794$. We want to generate a random value for T_{1}, i.e., the time at which the first car arrives.
\qquad 11. Using the Inverse Transformation method, then according to the table below the nearest value of T_{1}
should be
a. 1minute
e. 5 minutes
i. 9 minutes
b. 2 minutes
f. 6 minutes
j. 10 minutes
c. 3 minutes
g. 7 minutes
k. 11 minutes
d. 4 minutes
h. 8 minutes

1. greater than 12 min .
2. Suppose that the next uniformly-generated random number is 0.218 . Then corresponding arrival time T_{2} of the second car is (choose nearest value):
a. 1minute
e. 5 minutes
i. 9 minutes
b. 2 minutes
f. 6 minutes
j. 10 minutes
c. 3 minutes
g. 7 minutes
k. 11 minutes
d. 4 minutes
h. 8 minutes
3. greater than 12 min .

\rangle			
x	$\mathrm{P}\{\mathrm{T} \leq \mathrm{x}\}$	$\Delta \mathrm{p}$	$\mathrm{P}\{\mathrm{T}\rangle \mathrm{x}\}$
0	0.00000000	0.00000000	1.00000000
1	0.18126925	0.18126925	0.81873075
2	0.32967995	0.14841071	0.67032005
3	0.45118836	0.12150841	0.54881164
4	0.55067104	0.09948267	0.44932896
5	0.63212056	0.08144952	0.36787944
6	0.69880579	0.06668523	0.30119421
7	0.75340304	0.05459725	0.24659696
8	0.79810348	0.04470045	0.20189652
9	0.83470111	0.03659763	0.16529889
10	0.86466472	0.02996360	0.13533528
11	0.88919684	0.02453212	0.11080316
12	0.90928205	0.02008521	0.09071795
13	0.92572642	0.01644438	0.07427358
14	0.93918994	0.01346352	0.06081006
15	0.95021293	0.01102299	0.04978707

\qquad

```
<\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle
```

\qquad 13. We want to generate random numbers X between 0 and 3 , having the triangular distribution whose density function is shown below. What is the value of C ? (Choose nearest value.)
a. 0.2
d. 0.5
g. 0.9
b. 0.3
e. 0.6
h. 1.0
c. 0.4
f. 0.7
i. greater than 1.0
\qquad 14. Suppose that we generate two uniformly-distributed random numbers in the interval $[0,1]$, namely $R_{1}=0.713$ and $\mathrm{R}_{2}=0.224$, and apply the rejection method. What random number is generated from this pair of numbers? (Choose nearest value.)
a. 0.5
b. 1.0
c. 1.5
d. 2.0
e. 2.5
f. 3.0
g. None of the above

57:022 Principles of Design II - Quiz \#3 Solutions
Spring 2000

True (+) or False (o)?
o 1. The rejection method to generate a random number can be used to simulate a random variable having a Normal distribution.
o 2. The density function evaluated at the "mode" of a probability distribution is 50%.
_ $\pm \quad$ 3. The maximum value of the cumulative distribution function is 1 .
o 4. The maximum value of the density function for a random variable is 1 .
_ \quad. The inverse transformation method to generate a random number can be used to simulate a random variable having a triangular distribution.
$\pm \quad$ 6. The inverse transformation method requires as input a single random number in the interval $[0,1]$.
o 7. The rejection method requires as input a single random number in the interval $[0,1]$.
$\pm \quad$ 8. If we wanted to simulate a random variable with 2-Erlang distribution, we might generate two random numbers having the exponential distribution and sum them.
o 9. The rejection method to generate a random number can be used to simulate a random variable having an exponential distribution.
d 10. The "Cumulative Distribution Function" (CDF) of a random variable X is
a. $f(x)=P\{x \mid X\}$
b. $F(x)=P\{X \geq x\}$
c. $\mathrm{f}(\mathrm{x})=\mathrm{P}\{\mathrm{x}\}$
d. $F(x)=P\{X \leq x\}$
e. $F(x)=P\{X=x\}$
f. $f(x)=P\{X \mid x\}$

We wish to generate some random numbers having an exponential distribution as the inter-arrival times (where the average is 5 minutes.) Suppose that a procedure for generating uniformly-distributed random numbers has yielded the value $\mathrm{R}=0.794$. We want to generate a random value for T_{1}, i.e., the time at which the first car arrives.
- ${ }{-}$11. Using the Inverse Transformation method, then according to the table below the nearest value of T_{1} should be
a. 1minute
e. 5 minutes
i. 9 minutes
b. 2 minutes
f. 6 minutes
j. 10 minutes
c. 3 minutes
g. 7 minutes
k. 11 minutes
d. 4 minutes
h. 8 minutes

1. greater than 12 min .
i 12. Suppose that the next uniformly-generated random number is 0.218 . Then the corresponding arrival time T_{2} of the second car is (choose nearest value):
a. 1minute
e. 5 minutes
i. 9 minutes $(=8$ minutes +1 minute)
b. 2 minutes
f. 6 minutes
j. 10 minutes
c. 3 minutes
g. 7 minutes
k. 11 minutes
d. 4 minutes
h. 8 minutes
2. greater than 12 min .

b 13. We want to generate random numbers X between 0 and 3, having the triangular distribution whose density function is shown below. What is the value of C ? (Choose nearest value.)
a. 0.2
d. 0.5
g. 0.9
b. 0.3 ($1 / 3$)
e. 0.6
h. 1.0
c. 0.4
f. 0.7
i. greater than 1.0
\qquad 14. Suppose that we generate two uniformly-distributed random numbers in the interval $[0,1]$, namely $R_{1}=$???? and $\mathrm{R}_{2}=$????, and apply the rejection method. What random number is generated from this pair of numbers? (Choose nearest value.)
a. 0.5
b. 1.0
c. 1.5
d. 2.0
e. 2.5
f. 3.0
g. None of the above

Note: There were three versions of the quiz, each with different answers:

\qquad

57:022 Principles of Design II - Quiz \#4
Wednesday, February 16, 2000

The following statements refer to today's homework assignment in which you simulated the movement of dirt by trucks. (I assume that the entities of your model represent the trucks.)

True (+) or False (o)?
-_ 1. The ARRIVE module is located on the SUPPORT template.
_- 2. SUPPORT and COMMON are names of templates.
_- 3. An ARRIVE module simulates each time a truck arrives at the loading area.
__ 4. The "capacity" of a SERVER module is the maximum number of entities which can wait at that server.
__ 5. Only one truck at a time may be loaded.
__ 6. The length of time to be simulated is specified in the SIMULATE module.
_- 7. The travel times to \& from the loading area are assumed to be negligible and are ignored.
-_ 8. The number of entities in the system is specified in the ARRIVE module.
__ 9. The entities depart the system at a DEPART module.
__ 10. Only one truck at a time may unload dirt.
__ 11. In this model, you specified how often observations are made of the system, and this number of observations appears in the output report.
_- 12. The number of replications (specified in the SIMULATE module) is the number of truckloads.
13. The SERVER and ARRIVE modules appear on the same template.
14. The SERVER and SIMULATE modules appear on different templates.
15. The modules used to build the model are found on "templates".
-- 16. In order to start the simulation, you must enter the command "run".
_- 17. The number of servers in your model is equal to the number of trucks that are used.
_- 18. The ARENA simulation software is available on the Windows NT computers in the ICAEN labs.

Name \qquad

$$
\begin{gathered}
\bigcirc \text { Principles of Design II } \\
\text { Quiz \#4 Solutions } \\
\text { Wednesday, February 16, 2000 } \\
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
\end{gathered}
$$

Restatement of homework problem: Bectol, Inc. is building a dam. A total of $1,000,000 \mathrm{cu} \mathrm{ft}$ of dirt is needed to construct the dam. A loader is used to collect dirt for the dam. Then the dirt is moved via dump trucks to the dam site. Only one loader is available, and it rents for $\$ 100$ per hour. Bectol can rent, at $\$ 40$ per hour, as many dump trucks as desired. Each dump truck can hold 1000 cu ft of dirt. Triangular distributions are assumed to describe the following various random quantities (primarily because the parameters are easily understood and estimated by the work crews):

Random variable	Best case (minimum time)	Most Likely	Worst case (maximum time)
Loading truck	8 minutes	12 minutes	18 minutes
Travel to unloading area	2 minutes	3 minutes	5 minutes
Unloading truck	1 minute	2 minutes	4 minutes
Return to loader	2 minutes	3 minutes	4 minutes

Simulate an 8-hour day to estimate the number of loads which can be moved per hour, so that you can estimate the total completion time.

The following statements refer to today's homework assignment in which you simulated the movement of dirt by trucks. (I assume that the entities of your model represent the trucks.)

True (+) or False (o)?

- 1. The ARRIVE module is located on the SUPPORT template.
o 2. An ARRIVE module simulates each time a truck arrives at the loading area.
o 3. The "capacity" of a SERVER module is the maximum number of entities which can wait at that server.
\pm 4. The length of time to be simulated is specified in the SIMULATE module.
- 5. The travel times to \& from the loading area are assumed to be negligible and are ignored.
$\pm \quad$ 6. The number of trucks in the system is specified in the ARRIVE module.
o 7. The entities depart the system at a DEPART module..
o 8. The number of replications (specified in the SIMULATE module) is the number of truckloads.
$\pm \quad$ 9. The modules used to build the model are found on "templates".
- 10. In order to start the simulation, you must enter the command "run".
- 11. The number of servers in your model is equal to the number of trucks that are used.
\qquad

The appropriate values have not yet been entered into the dialogue windows shown below!

Loading Area

o 12. The capacity should be equal to the number of trucks.
$\frac{\mathrm{o}}{}$ 13. Process Time is TRIA $(2,3,5)$
o 14. Route Time should be zero.

Unloading Area

- 18. In the Simulate module, the length of replication should be 2400.
+ 19. In the Arrive module, Max Batches is equal to the number of trucks
± 20. If the loader could be kept busy continually, about 28 days would be required to move all of the dirt
Refer to the ARENA simulation output:
+21 . The loader is kept busy about 62% of the time.
$+\quad 22$. The total number of trucks unloaded is 22 .
\qquad

Between Replications...
V Initialize System
\sqrt{V} Initialize Statistics

\qquad

ARENA Simulation Results for the number of trucks $=3$

Summary for Replication 1 of 1					
Project: Bectol Inc.Probl			Run execution date :		2/15/2000
Analyst: Hansuk Sohn			Model revision date:		: 2/15/2000
Replication ended at time					
TALLY VARIABLES					
Identifier	Average	Half Width	Minimum	Maximum	Observations
Unload Area_R_Q Queue	. 00000	(Insuf)	. 00000	. 00000	22
Load Area_R_Q Queue Ti	. 00000	(Insuf)	. 00000	. 00000	23
	DISCR	TE-CHANGE VA	RIABLES		
Identifier	Average	Half Width	Minimum	Maximum	Final Value
\# in Unload Area_R_Q	. 00000	(Insuf)	. 00000	. 00000	. 00000
Unload Area_R Availabl	3.0000	(Insuf)	3.0000	3.0000	3.0000
Load Area_R Busy	. 61683	(Insuf)	. 00000	1.0000	1.0000
\# in Load Area_R_Q	. 00000	(Insuf)	. 00000	. 00000	. 00000
Load Area_R Available	1.0000	(Insuf)	1.0000	1.0000	1.0000
Unload Area_R Busy	. 09783	(Insuf)	. 00000	1.0000	. 00000

Simulation run time: 0.00 minutes.
Simulation run complete.
\qquad

57:022 Principles of Design II
 Quiz \#5 -- Spring 2000

1. If you use the Minitab program to fit a line, it will find the straight line which minimizes the sum of the absolute values of the errors, i.e., the sum of the vertical distances between each data point and the line.
___ 2. If $\mathrm{F}(\mathrm{t})$ is the CDF of the interarrival time for a Poisson process, the expected number of arrivals E_{i} which fail in the time interval $\left[t_{i-1}, t_{i}\right]$ is $F\left(t_{j}\right)-F\left(t_{i-1}\right)$
2. In the chi-square goodness-of-fit test, the number of degrees of freedom is never more than the number of "cells" of the histogram.
3. In a Poisson process, the time between arrivals has an exponential distribution.
4. The mean and standard deviation of the exponential distribution are always equal.
5. In a Poisson process with arrival rate $1 /$ minute, the number of arrivals in one minute is random, with a exponential distribution having mean 1 .
6. The Erlang distribution is a special case of the exponential distribution.

The time between arrivals of exactly forty vehicles are measured. The number of observations O_{i} falling within each half-minute interval is shown in the table below. The average is computed by weighting the midpoint of each interval by its number of observations: $0.25 \times 9+0.75 \times 4+1.25 \times 5+\ldots=2.225$ minutes. We wish to test the "goodness of fit" of the exponential distribution having mean 2.225 minutes.

$\underline{\mathrm{i}}$	$\underline{\text { Interval }}$	O_{i}	p_{i}	E_{i}	$\left(\mathrm{E}_{\mathrm{i}}-\mathrm{O}_{\mathrm{i}}\right)^{2 / \mathrm{E}_{\mathrm{i}}}$
1	$0.0-0.5$	9	0.2015	8.0594	0.1098
2	$0.5-1.0$	4	0.1609	6.4355	0.9217
3	$1.0-1.5$	5	0.1285	5.1389	0.0038
4	$1.5-2.0$	3	0.1026	4.1035	0.2967
5	$2.0-2.5$	7	0.0819	3.2767	4.2308
6	$2.5-3.0$	3	0.0654	2.6165	0.0562
7	>3.0	9	0.2592	10.3696	0.1809

The sum of the values in the last column is $\mathrm{D}=5.8$.

deg.of freedom	99%	95%	Chi-square Dist'n $\mathrm{P}\left\{\mathrm{D} \geq \chi^{2}\right\}$				
2	0.0201	0.103	90%	0.211	4.605	5%	
3	0.115	0.352	0.584	6.251	5.991	7.815	
4	0.297	0.711	1.064	7.779	9.488	11.341	
5	0.554	1.145	1.610	9.236	11.070	13.277	
6	0.872	1.635	2.204	10.645	12.592	15.086	
7	1.239	2.167	2.833	12.017	14.067	18.812	

\qquad

Indicate " + " for true, " 0 " for false:
8. The quantity E_{i} is a random variable with approximately Poisson distribution.
9. The parameter of the exponential distribution is assumed to be $\lambda=1 / 2.225 \mathrm{~min} .=0.45 / \mathrm{min}$.
10. The probability p_{i} that a car arrives in an interval $\# \mathrm{i},\left[\mathrm{t}_{1}, \mathrm{t}_{2}\right]$, is $\mathrm{F}\left(\mathrm{t}_{1}\right)-\mathrm{F}\left(\mathrm{t}_{2}\right)$
11. The CDF of the distribution of interarrival times is assumed to be $F(t)=1-\lambda e^{-\lambda t}$
12. The number of observations, O_{i}, in an interval should have a binomial distribution, with $\mathrm{n}=40$.
13. The quantity D is assumed to have the chi-square distribution.
14. The quantity $\left(\mathrm{E}_{\mathrm{i}}-\mathrm{O}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}$ is assumed to have the normal $\mathrm{N}(0,1)$ distribution.
15. The chi-square distribution for this test will have 7 "degrees of freedom".
16. The number of observations O_{i} in interval $\# \mathrm{i}$ is a random variable with approximately Poisson distribution.
17. If it is true that T has the exponential distribution with mean 2.225 minutes, then the probability that D exceeds 5.8 should be less than 10%.
18. The exponential distribution with mean 2.225 minutes should be rejected as a model for the interarrival times of the vehicles.
19. The chi-square distribution for this test will have 6 "degrees of freedom".
20. The quantity D is assumed to have approximately a Normal distribution.
21. The degrees of freedom is reduced by 2 because (i) the total number of observations is fixed, and (ii) the data was used to estimate one parameter for the distribution being tested.
22. The smaller the value of D , the worse the fit for the distribution being tested.
23. The quantity E_{i} is the expected number of observations in interval \#i
24. The sum of several $\mathrm{N}(0,1)$ random variables has chi-square distribution.
_ $\pm \quad$ 1. In the chi-square goodness-of-fit test, the number of degrees of freedom is never more than the number of "cells" of the histogram.
_ _ 2. The mean and standard deviation of the exponential distribution are always equal.
o 3. The Erlang distribution is a special case of the exponential distribution.
o 4. In a Poisson process with arrival rate $1 /$ minute, the number of arrivals in one minute is random, with an exponential distribution having mean 1 .
o 5. If you use the Minitab program to fit a line, it will find the straight line which minimizes the sum of the absolute values of the errors, i.e., the sum of the vertical distances between each data point and the line.
${ }_{-} \quad$ 6. If $\mathrm{F}(\mathrm{t})$ is the CDF of the interarrival time for a Poisson process, the expected number of arrivals E_{i} which fail in the time interval $\left[t_{i-1}, t_{i}\right]$ is $F\left(t_{i}\right)-F\left(t_{i-1}\right)$
o 7. In a Poisson process, the time between arrivals has a Poisson distribution.

The time between arrivals of exactly forty vehicles are measured. The number of observations O_{i} falling within each half-minute interval is shown in the table below. The average is computed by weighting the midpoint of each interval by its number of observations: $0.25 \mathrm{x} 9+0.75 \mathrm{x} 4+1.25 \times 5+\ldots=2.225$ minutes. We wish to test the "goodness of fit" of the exponential distribution having mean 2.225 minutes.

$\underline{\mathrm{i}}$	$\underline{\text { Interval }}$	O_{i}	p_{i}	E_{i}	$\left(\mathrm{E}_{\mathrm{i}}-\mathrm{O}_{\mathrm{i}}\right)^{2 /} \mathrm{E}_{\mathrm{i}}$
1	$0.0-0.5$	9	0.2015	8.0594	0.1098
2	$0.5-1.0$	4	0.1609	6.4355	0.9217
3	$1.0-1.5$	5	0.1285	5.1389	0.0038
4	$1.5-2.0$	3	0.1026	4.1035	0.2967
5	$2.0-2.5$	7	0.0819	3.2767	4.2308
6	$2.5-3.0$	3	0.0654	2.6165	0.0562
7	>3.0	9	0.2592	10.3696	0.1809

The sum of the values in the last column is $\mathrm{D}=5.8$.

deg.of freedom	99%	95%	Chi-square Dist'n $\mathrm{P}\left\{\mathrm{D} \geq \chi^{2}\right\}$			
90%	10%	5%	1%			
2	0.0201	0.103	0.211	4.605	5.991	9.210
3	0.115	0.352	0.584	6.251	7.815	11.341
4	0.297	0.711	1.064	7.779	9.488	13.277
5	0.554	1.145	1.610	9.236	11.070	15.086
6	0.872	1.635	2.204	10.645	12.592	16.812
7	1.239	2.167	2.833	12.017	14.067	18.475

Indicate " + " for true, "o" for false:
\qquad 8. The smaller the value of D , the worse the fit for the distribution being tested.

- \underline{o}_{-}
- ${ }^{-}$
- ${ }{-}$

9. The chi-square distribution for this test will have 6 "degrees of freedom".
10. The chi-square distribution for this test will have 7 "degrees of freedom".
11. The number of observations O_{i} in interval $\# \mathrm{i}$ is a random variable with approximately Poisson distribution.
12. The quantity D is assumed to have the chi-square distribution.
13. The quantity D is assumed to have approximately a Normal distribution.
14. The degrees of freedom is reduced by 2 because (i) the total number of observations is fixed, and (ii) the data was used to estimate one parameter for the distribution being tested.
15. The quantity E_{i} is the expected number of observations in interval \#i
16. The sum of several $\mathrm{N}(0,1)$ random variables has chi-square distribution.
17. The quantity $\left(\mathrm{E}_{\mathrm{i}}-\mathrm{O}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}$ is assumed to have the normal $\mathrm{N}(0,1)$ distribution.
18. If it is true that T has the exponential distribution with mean 2.225 minutes, then the probability that D exceeds 5.8 should be less than 10%.
o_ 19. The probability p_{i} that a car arrives in an interval $\# \mathrm{i},\left[\mathrm{t}_{1}, \mathrm{t}_{2}\right]$, is $\mathrm{F}\left(\mathrm{t}_{1}\right)-\mathrm{F}\left(\mathrm{t}_{2}\right)$
19. The CDF of the distribution of interarrival times is assumed to be $F(t)=1-\lambda e^{-\lambda t}$
20. The exponential distribution with mean 2.225 minutes should be rejected as a model for the interarrival times of the vehicles.
21. The parameter of the exponential distribution is assumed to be $\lambda=1 / 2.225 \mathrm{~min} .=0.45 / \mathrm{min}$.
22. The number of observations, O_{i}, in an interval should have a binomial distribution, with $\mathrm{n}=40$.
23. The quantity E_{i} is a random variable with approximately Poisson distribution.
\qquad

57:022 Principles of Design II
 Quiz \#6 -- Spring 2000

Indicate "+" for true, " 0 " for false:
___ 1. The quantity $R(t)$ is the fraction of the motors which we expect to have failed at time t (or earlier).
__ 2. The Weibull distribution is usually appropriate for the minimum of a large number of nonnegative random variables.
- 3. The Weibull CDF, i.e., $\mathrm{F}(\mathrm{t})$, gives, for each motor, the probability that it has failed at or before time t .
___ 4. We assumed in this HW (\#6) that the number of motor failures at time $t, N_{f}(t)$, has a Weibull distribution.
__ 5. According to the results of this homework exercise, the failure rate of the motors is increasing rather than decreasing.
- 6. Given only the coefficient of variation for the Weibull distribution (the ratio σ / μ), the parameter k can be determined.
___ 7. The fraction of the machines which are expected to fail in the time interval $\left[\mathrm{t}_{\mathrm{i}-1}, \mathrm{t}_{\mathrm{i}}\right]$ is $\mathrm{F}\left(\mathrm{t}_{\mathrm{i}}\right)$ -$\mathrm{F}\left(\mathrm{t}_{\mathrm{i}-1}\right)$ where $\mathrm{F}(\mathrm{t})$ is the CDF of the failure time distribution.
___ 8. A positive value of k indicates an increasing failure rate, and negative k indicates a decreasing failure rate.
___ 9. The method used in this HW (\#6) to estimate the Weibull parameters $\mathrm{u} \& \mathrm{k}$ does not require that the motors be tested until all have failed.
__ 10. The CDF of the failure time of a motor is assumed to be $F(t)=1-e^{-(t / 4)^{k}}$ for some parameters u \& k.
11. $\Gamma(\mathrm{n})=\mathrm{n}$! if n is an integer.
12. The time between the failures in the batch of 200 motors is assumed to have the Weibull distribution.
___ 13. The exponential distribution is a special case of the Weibull distribution, with a constant failure rate.
14. The Reliability of a device with random failure time T is defined as
a. $\mathrm{R}(\mathrm{t})=\mathrm{P}\{\mathrm{t}\}$
b. $R(x)=P\{T \mid t\}$
c. $R(x)=P\{T=t\}$
d. $R(t)=P\{t \mid T\}$
e. $R(t)=P\{T \geq t\}$
f. $R(x)=P\{T \leq t\}$

Select the letter below which indicates each correct answer:
In order to estimate the Weibull parameters by the method of today's homework,
16. The variable plotted on the horizontal axis should be ...
17. The variable plotted on the vertical axis should be ...
18. The slope of the line should be approximately ...
19. The vertical intercept of the line should be approximately ...
a. t
b. R_{t}
c. shape parameter k
d. $\ln t$
e. $\ln R_{t}$
f. scale parameter u
g. $\ln 1 / \mathrm{t}$
h. $\ln 1 / \mathrm{Rt}$
i. mean value μ
j. $\ln \ln t$
k. $\ln \ln R_{t}$

1. standard deviation σ
n. $\ln \ln 1 / R t$
o. $-\ln \mathrm{u}$
m. $\ln \ln 1 / t$
q. $-\mathrm{u} \ln \mathrm{k}$
r. $\ln \mathrm{k}$

Indicate "+" for true, " 0 " for false:
o 1. The quantity $R(t)$ is the fraction of the motors which we expect to have failed at time t (or earlier). Note: $R(t)$ is the fraction we expect to survive until time t.
_ \quad 2. The Weibull distribution is usually appropriate for the minimum of a large number of nonnegative random variables.
_ $-\quad$ 3. The Weibull CDF, i.e., $F(t)$, gives, for each motor, the probability that it has failed at or before time t.
o 4. We assumed in this HW (\#6) that the number of motor failures at time $\mathrm{t}, \mathrm{N}_{\mathrm{f}}(\mathrm{t})$, has a Weibull distribution. Note: $\mathrm{N}_{\mathrm{f}}(\mathrm{t}) / \mathrm{N}$ is assumed to have Weibull distribution.
_ \quad. According to the results of this homework exercise, the failure rate of the motors is increasing rather than decreasing. Note: $k>1$ indicates increasing failure rate, and in this case $k>3$.
$\pm \quad 6$. Given only the coefficient of variation for the Weibull distribution (the ratio σ / μ, the parameter k can be determined.
_ \quad 7. The fraction of the machines which are expected to fail in the time interval $\left[\mathrm{t}_{\mathrm{i}-1}, \mathrm{t}_{\mathrm{i}}\right]$ is $\mathrm{F}\left(\mathrm{t}_{\mathrm{i}}\right)$ -$F\left(t_{i-1}\right)$ where $F(t)$ is the CDF of the failure time distribution.
o 8. A positive value of k indicates an increasing failure rate, and negative k indicates a decreasing failure rate. Note: $k>1$ indicates increasing failure rate, $k<1$ indicates decreasing failure rate.
_ \quad 9. The method used in this HW (\#6) to estimate the Weibull parameters $\mathrm{u} \& \mathrm{k}$ does not require that the motors be tested until all have failed.
_ _ 10. The CDF of the failure time of a motor is assumed to be $F(t)=1-e^{-(t / 4)^{k}}$ for some parameters u \& k.
$\begin{array}{ll}\text { _o_ } & \text { 11. } \Gamma(\mathrm{n})=\mathrm{n}!\text { if } \mathrm{n} \text { is an integer. Note: } \Gamma(1+\mathrm{n})=\mathrm{n}! \\ \text { _o_ } & \text { 12. The time between the failures in the batch of } 200 \text { motors is assumed to have the Weibull }\end{array}$ distribution. Note: the lifetime is assumed to have the Weibull distribution.
13. The exponential distribution is a special case of the Weibull distribution, with a constant failure rate.
e 14. The Reliability of a device with random failure time T is defined as
a. $R(t)=P\{t\}$
b. $R(x)=P\{T \mid t\}$
c. $R(x)=P\{T=t\}$
d. $R(t)=P\{t \mid T\}$
e. $R(t)=P\{T \geq t\}$
f. $R(x)=P\{T \leq t\}$

Select the letter below which indicates each correct answer:
In order to estimate the Weibull parameters by the method of today's homework,
$\ln t$ 16. The variable plotted on the horizontal axis should be ...
$\ln \ln 1 / \mathrm{Rt}$ 17. The variable plotted on the vertical axis should be ...
k 18. The slope of the line should be approximately ...
$-\mathrm{k} \ln \mathrm{u}$ 19. The vertical intercept of the line should be approximately ...
a. t
b. R_{t}
c. shape parameter k
d. $\ln \mathrm{t}$
e. $\ln R_{t}$
f. scale parameter u
g. $\ln 1 / \mathrm{t}$
h. $\ln 1 / R t$
i. mean value μ
j. $\ln \ln t$
m. $\ln \ln 1 / \mathrm{t}$
k. $\ln \ln R_{t}$

1. standard deviation σ
n. $\ln \ln 1 / R t$
o. $-\ln u$
p. $-\mathrm{k} \ln \mathrm{u}$
q. $-\mathrm{u} \ln \mathrm{k}$
r. $\ln \mathrm{k}$
\qquad
```
\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc
    57:022 Principles of Design II
                        Quiz #7
            Friday,March 24, }200
\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc)
```

1. A system contains 4 types of devices, with the system reliability represented schematically by

It has been estimated that the lifetime probability distributions of the device C is Exponential, with mean 2000 days.

1. For each scenario, indicate in the "System" (last) column whether the system fails ("X" indicates component failure):

Scenario	A	B1	B2	C1	C2	D	System
a		X				X	
b	X						
c			X	X			
d			X		X		
e		X		X			

2. Suppose that the lifetime probability distributions of the device C is Exponential, with mean 2000 days. Then the reliability of device $\mathbf{C 1}$ above for a designed system lifetime of 1000 days is:
a. $1-\mathrm{e}^{-100 c}$
b. $1-\mathrm{e}^{-1}$
c. e^{-2}
d. e^{-1}
e. $1-\mathrm{e}^{-0.5}$
f. $\mathrm{e}^{-0.5}$
g. None of the above
___ 3. Suppose the following component reliabilities:
A: 80%
B1\&B2: 90\%
C1\&C2: 70\%
D. 90%

Then the system reliability is:
a. $0.8 \times\left[(0.9)^{2}\left(1-(0.7)^{2}\right)\right] \times 0.9=0.297432$
b. $0.8 \times\left(1-(0.9)^{2}\right) \times(0.3)^{2} \times 0.9=0.012312$
c. $0.8 \times\left[1-(0.9)^{2}\left(1-(0.3)^{2}\right)\right] \times 0.9=0.124488$
d. $0.8 \times\left[1-\left(1-(0.9)^{2}\right)(0.3)^{2}\right] \times 0.9=0.707688$
e. $0.8 \times\left(1-(0.9)^{2}\right) \times(0.7)^{2} \times 0.9=0.067032$
f. None of the above
\qquad
A system has 6 components which are subject to failure, each having lifetimes with exponential distributions. The average lifetimes are:

Component	Average Lifetime
A	2000 days
B	3000 days
C	800 days
D	800 days
E	500 days
F	500 days
G	500 days

The system design is such that the system will fail if any one of the following occur:

- Both A and B fail
- Either C or D
- All of E, F, \&G fail
___4. Which diagram below represents the system above?

g. None of the above
\qquad
\qquad 5. Which of the ARENA models below would be appropriate for this system?
a.

b.

c.

\qquad
d.

6. Match the three ARENA models below to the diagrams:
___a.

Simulate	Statistics

___b.

\qquad

DIAGRAMS:1.

2.


```
\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc
    57:022 Principles of Design II
                    Quiz #7
    Friday, March 24, }200
\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc)
```

1. A system contains 4 types of devices, with the system reliability represented schematically by

2. For each scenario, indicate in the "System" (last) column whether the system fails ("X" indicates component failure):

Scenario	A	B1	B2	C1	C2	D	System
a		X				X	X
b	X						X
c			X	X			
d			X		X		
e		X		X			

\underline{f}_{-}2. Suppose that the lifetime probability distributions of the device C is Exponential, with mean 2000 days. Then the reliability of device $\mathbf{C 1}$ above for a designed system lifetime of 1000 days is:
a. $1-\mathrm{e}^{-100 c}$
b. $1-\mathrm{e}^{-1}$
c. e^{-2}
d. e^{-1}
e. $1-\mathrm{e}^{-0.5}$
f. $\mathrm{e}^{-0.5}$
g. None of the above
d_ 3. Suppose the following component reliabilities:
A: 80%
B1\&B2: 90\%
C1\&C2: 70\%
D. 90%

Then the system reliability is:

$$
\begin{aligned}
& \text { a. } 0.8 \times\left[(0.9)^{2}\left(1-(0.7)^{2}\right)\right] \times 0.9=0.297432 \\
& \text { b. } 0.8 \times\left(1-(0.9)^{2}\right) \times(0.3)^{2} \times 0.9=0.012312 \\
& \text { c. } 0.8 \times\left[1-(0.9)^{2}\left(1-(0.3)^{2}\right)\right] \times 0.9=0.124488 \\
& \text { d. } 0.8 \times\left(1-\left(1-(0.9)^{2}\right)(0.3)^{2}\right] \times 0.9=0.707688 \\
& \text { e. } 0.8 \times\left(1-(0.9)^{2}\right) \times(0.7)^{2} \times 0.9=0.067032
\end{aligned}
$$

f. None of the above

A system has 6 components which are subject to failure, each having lifetimes with exponential distributions. The average lifetimes are:

Component	Average Lifetime
	2000 days
B	3000 days
C	800 days
D	800 days
E	500 days
F	500 days
G	500 days

The system design is such that the system will fail if any one of the following occur:

- Both A and B fail
- Either C or D
- All of E, F, \&G fail
_e_4. Which diagram below represents the system above?

g. None of the above
\underline{b}_{-}5. Which of the ARENA models below would be appropriate for this system?
a.

b.

c.

d.

6. Match the three ARENA models below to the diagrams:

3_a.

Simulate	Statistics
Reliability	

- 1 b.

_ ${ }^{\text {_c } .}$

2.

\qquad

> 57:022 Principles of Design II OOO
> Quiz \#8 - April 10, 2000

a. Complete the labeling of the nodes on the A-O-A project network above.
b. The activity durations are given below on the arrows. Finish computing the Early Times (ET) and Late Times (LT) for each node, writing them in the box (with rounded corners) beside each node.

d. Find the slack ("total float") for activity D.
e. Which activities are critical? (circle: A B C D E F G H I J K)
f. What is the earliest completion time for the project?
g. Complete the A-O-N (activity-on-node) network below for this same project. (Add any "dummy" activities which are necessary.)

Suppose that the durations of the activities are all random variables with the expected values as given, and standard deviations equal to 1 .
i. According to PERT, the duration of the project will have Normal distribution with mean \qquad and standard deviation \qquad -
h. In the ARENA model to simulate this project, there should be \qquad DUPLICATE nodes and _ BATCH nodes.

a. Complete the labeling of the nodes on the A-O-A project network above.

Solution: see above. Note: one of the two nodes not labeled above should be \#2 and the other \#3.
b. The activity durations are given below on the arrows. Finish computing the Early Times (ET) and Late Times (LT) for each node, writing them in the box (with rounded corners) beside each node. Solution: see below.

d. Find the slack ("total float") for activity D. 1 day

Solution: Early Start for D is ET(3)=3, and Late Finish is LT(4)=7. Since the duration is 3 days, Late Start of D is (Late Finish of D) - 3=6 days. Therefore Slack of D is Early Start - Late Start $=7-6=1$ day.

f. What is the earliest completion time for the project? 13 days
g. Complete the A-O-N (activity-on-node) network below for this same project. (Add any "dummy" activities which are necessary.)

Solution: see above. Note that although "dummy" activities might be used, corresponding to the dummy activities in the AOA network, they are not necessary.

Suppose that the durations of the activities are all random variables with the expected values as given, and standard deviations equal to 1 .
i. According to PERT, the duration of the project will have Normal distribution with mean 13 days_ and standard deviation 1.732 .

Solution: If CP denotes the set of activities on the critical path, then since the variance of the sum is the sum of the variances, $\sigma_{\text {total }}^{2}=\sum_{\mathrm{j} \in \mathrm{CP}} \sigma_{\mathrm{j}}^{2}=3 \Rightarrow \sigma_{\text {total }}=\sqrt{3}$
h. In the ARENA model to simulate this project, there should be 5 DUPLICATE nodes and 6_BATCH nodes.

Solution: Duplicate nodes will be required at exit of "Begin" node as well as A, B, D \& E (where more than one arrow leaves the node). Batch nodes will be required at entrance to nodes D, E, F, G, H, \& "End"
\qquad

```
<><><><> 57:022 Principles of Design II <><><><>
    Quiz #9 -- April 17, 2000
```

Consider the following situation:

- A neighborhood grocery store has only one check-out counter.
- Customers arrive at the check-out at a rate of one per 2 minutes.
- The grocery store clerk requires an average of one minute and 15 seconds to serve each customer. However, as soon as the waiting line exceeds 2 customers, including the customer being served, the manager helps by packing the groceries, which reduces the average service time by 50%. (Note that still only one customer at a time is being served!)
- Assume a Poisson arrival process and exponentially-distributed service times. Assume for ease of computation neglible probability that the queue includes more than 3 customers (four, counting the one being served).
\qquad 1. Choose the transition diagram below corresponding to this system.

\qquad 2. The steady-state probability π_{0} is computed by the formula:
a. $\frac{1}{\pi_{0}}=1+\frac{2}{4 / 5}+\frac{2}{4_{5}}+\frac{2}{8_{5}}+\frac{2}{8_{5}}$
b. $\frac{1}{\pi_{0}}=1+\frac{2}{4_{5}}+\frac{2}{4 / 5} \times \frac{2}{4 / 5}+\frac{2}{4 / 5} \times \frac{2}{4_{5}} \times \frac{2}{8_{5}}+\frac{2}{4_{5}} \times \frac{2}{4_{5}} \times \frac{2}{8_{5}} \times \frac{2}{8_{5}}$
c. $\frac{1}{\pi_{0}}=1+\frac{2}{5 / 4}+\frac{2}{5 / 4} \times \frac{2}{5 / 4}+\frac{2}{5 / 4} \times \frac{2}{5_{4}} \times \frac{2}{5 / 8}+\frac{2}{5 / 4} \times \frac{2}{5_{4}} \times \frac{2}{5_{8}} \times \frac{2}{5_{8}}$
d. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 8}+\frac{1 / 2}{5 / 8}$
e. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{4 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5} \times \frac{1 / 2}{8 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5} \times \frac{1 / 2}{8 / 5} \times \frac{1 / 2}{8 / 5}$
f. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 8}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 8} \times \frac{1 / 2}{5 / 8}$
g. None of the above

The steady-state probabilities for this system are:

$$
\pi_{0}=46 \%, \pi_{1}=29 \%, \pi_{2}=18 \%, \pi_{3}=6 \% \& \pi_{4}=2 \%
$$

\qquad 3. What fraction of the day will the checkout area be empty? Choose nearest answer:
a. 10%
c. 30%
e. 50%
g. 70%
b. 20%
d. 40%
f. 60%
h. NOTA
___ 4. What fraction of the day will the manager be working in the checkout area? Choose nearest answer:
a. 10%
c. 30%
e. 50%
g. 70%
b. 20%
d. 40%
f. 60%
h. NOTA
\qquad
\qquad 5. What is the average number of customers in the checkout area? Choose nearest answer:
a. 0.2
b. 0.4
c. 0.6
d. 0.8
e. 1.0
f. 1.2
g. 1.4
h. 1.6
\qquad 6. What is the average number of customers waiting to be served? (Choose nearest answer.)
a. 0.2
b. 0.4
c. 0.6
d. 0.8
e. 1.0
f. 1.2
g. 1.4
h. 1.6

Suppose that the average arrival rate in steady state is approximately one every 2 minutes (not the actual value).
\qquad 7. According to Little's Formula, the average total time spent by a customer in the checkout area is (choose nearest value):
a. 1 minute
b. 1.25 minutes
c. 1.5 minutes
d. 1.75 minutes
e. 2 minutes
f. 2.25 minutes
g. 2.5 minutes
h. >2.5 minutes

Match the birth/death diagram with the queue classification:

\qquad

```
<><><><> 57:022 Principles of Design II <><><><>
    Quiz #9 -- April 17, 2000
```

Consider the following situation:

- A neighborhood grocery store has only one check-out counter.
- Customers arrive at the check-out at a rate of one per 2 minutes.
- The grocery store clerk requires an average of one minute and 15 seconds to serve each customer. However, as soon as the waiting line exceeds 2 customers, including the customer being served, the manager helps by packing the groceries, which reduces the average service time by 50%. (Note that still only one customer at a time is being served!)
- Assume a Poisson arrival process and exponentially-distributed service times. Assume for ease of computation that the queue never includes more than 4 customers (five, counting the one being served).
\qquad 1. Choose the transition diagram below corresponding to this system.

2. The steadystate probability π_{0} is computed by the formula:
a. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 8}+\frac{1 / 2}{5 / 8}$
b. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 8}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 8} \times \frac{1 / 2}{5 / 8}$
c. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{4 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5} \times \frac{1 / 2}{8 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5} \times \frac{1 / 2}{8 / 5} \times \frac{1 / 2}{8 / 5}$
d. $\frac{1}{\pi_{0}}=1+\frac{2}{4 / 5}+\frac{2}{4 / 5} \times \frac{2}{4 / 5}+\frac{2}{4_{5}} \times \frac{2}{4_{5}} \times \frac{2}{8_{5}}+\frac{2}{4_{5}} \times \frac{2}{4_{5}} \times \frac{2}{8 / 5} \times \frac{2}{8_{5}}$
e. $\frac{1}{\pi_{0}}=1+\frac{2}{5 / 4}+\frac{2}{5 / 4} \times \frac{2}{5 / 4}+\frac{2}{5 / 4} \times \frac{2}{5_{4}} \times \frac{2}{5 / 8}+\frac{2}{5 / 4} \times \frac{2}{5_{4}} \times \frac{2}{5_{8}} \times \frac{2}{5_{8}}$
f. $\frac{1}{\pi_{0}}=1+\frac{2}{4 / 5}+\frac{2}{4_{5}}+\frac{2}{8_{5}}+\frac{2}{8_{5}}$
g. None of the above

Suppose that the steady-state probabilities for this system are:

$$
\pi_{0}=46 \%, \pi_{1}=29 \%, \pi_{2}=18 \%, \pi_{3}=6 \% \& \pi_{4}=2 \%
$$

\qquad 3. What fraction of the day will the checkout area be empty? Choose nearest answer:
a. 10%
c. 30%
e. 50%
g. 70\%
b. 20%
d. 40%
f. 60%
h. NOTA
\qquad 4. What fraction of the day will the manager be working in the checkout area? Choose nearest answer:
a. 10%
c. 30%
e. 50%
g. 70%
b. 20%
d. 40%
f. 60%
h. NOTA
\qquad
\qquad 5. What is the average number of customers in the checkout area? Choose nearest answer:
a. 0.2
b. 0.4
c. 0.6
d. 0.8
e. 1.0
f. 1.2
g. 1.4
h. 1.6
\qquad 6. What is the average number of customers waiting to be served? (Choose nearest answer.)
a. 0.2
b. 0.4
c. 0.6
d. 0.8
e. 1.0
f. 1.2
g. 1.4
h. 1.6

Suppose that the average arrival rate in steady state is approximately one every 2 minutes (not the actual value).
\qquad 7. According to Little's Formula, the average total time spent by a customer in the checkout area is (choose nearest value):
a. 1 minute
b. 1.25 minutes
c. 1.5 minutes
d. 1.75 minutes
e. 2 minutes
f. 2.25 minutes
g. 2.5 minutes
h. >2.5 minutes

Match the birth/death diagram with the queue classification:
\qquad M/M/2/4/4
_ M/M/1/4/4


```
<><><><> 57:022 Principles of Design II <><><><>
    Quiz #9 Solutions -- April 17, }200
```

Consider the following situation:

- A neighborhood grocery store has only one check-out counter.
- Customers arrive at the check-out at a rate of one per 2 minutes.
- The grocery store clerk requires an average of one minute and 15 seconds to serve each customer. However, as soon as the waiting line exceeds 2 customers, including the customer being served, the manager helps by packing the groceries, which reduces the average service time by 50%.
- Assume a Poisson arrival process and exponentially-distributed service times. Assume for ease of computation that the queue never includes more than 4 customers (five, counting the one being served).
___ 1. Choose the transition diagram below corresponding to this system.

g. None of the above
_f__ 2. The steadystate probability π_{0} is computed by the formula:
a. $\frac{1}{\pi_{0}}=1+\frac{2}{4 / 5}+\frac{2}{4_{5}}+\frac{2}{8_{5}}+\frac{2}{8_{5}}$
b. $\frac{1}{\pi_{0}}=1+\frac{2}{4_{5}}+\frac{2}{4 / 5} \times \frac{2}{4 / 5}+\frac{2}{4 / 5} \times \frac{2}{4_{5}} \times \frac{2}{8_{5}}+\frac{2}{4_{5}} \times \frac{2}{4_{5}} \times \frac{2}{8_{5}} \times \frac{2}{8_{5}}$
c. $\frac{1}{\pi_{0}}=1+\frac{2}{5 / 4}+\frac{2}{5 / 4} \times \frac{2}{5 / 4}+\frac{2}{5_{4}} \times \frac{2}{5_{4}} \times \frac{2}{5 / 8}+\frac{2}{5 / 4} \times \frac{2}{5 / 4} \times \frac{2}{5_{8}} \times \frac{2}{5_{8}}$
d. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 8}+\frac{1 / 2}{5 / 8}$
e. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 8}+\frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 4} \times \frac{1 / 2}{5 / 8} \times \frac{1 / 2}{5 / 8}$
f. $\frac{1}{\pi_{0}}=1+\frac{1 / 2}{4 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5} \times \frac{1 / 2}{8 / 5}+\frac{1 / 2}{4 / 5} \times \frac{1 / 2}{4 / 5} \times \frac{1 / 2}{8 / 5} \times \frac{1 / 2}{8 / 5}$
g. None of the above

The steady-state probabilities for this system are:

$$
\pi_{0}=46 \%, \pi_{1}=29 \%, \pi_{2}=18 \%, \pi_{3}=6 \% \& \pi_{4}=2 \%
$$

____ 3. What fraction of the day will the checkout area be empty? Choose nearest answer:
Solution: $\pi_{0}=46 \%$,
a. 10%
c. 30%
e. 50%
g. 70%
b. 20%
d. 40%
f. 60%
h. NOTA
- \underline{a}{-}4. What fraction of the day will the manager be working in the checkout area? Choose nearest answer: Solution: $\pi_{3}+\pi_{4}=8 \%$.
a. 10%
c. 30%
e. 50%
g. 70%
b. 20%
d. 40%
f. 60%
h. NOTA
___ ${ }_{\mathrm{e}}$ 5. What is the average number of customers in the checkout area? Choose nearest answer:
Solution: $L=0 \times \pi_{0}+\pi_{1}+2 \pi_{2}+3 \pi_{3}+4 \pi_{4}=0.91$
a. 0.2
b. 0.4
c. 0.6
d. 0.8
e. 1.0
f. 1.2
g. 1.4
h. 1.6
\underline{b}_{-}6. What is the average number of customers waiting to be served? (Choose nearest answer.)
Solution: $L_{q}=0 \times \pi_{0}+0 \times \pi_{1}+1 \times \pi_{2}+2 \pi_{3}+3 \pi_{4}=0.36$
a. 0.2
b. 0.4
c. 0.6
d. 0.8
e. 1.0
f. 1.2
g. 1.4
h. 1.6

Suppose that the average arrival rate in steady state is approximately one every 2 minutes (not the actual value).
__d_ 7. According to Little's Formula, the average total time spent by a customer in the checkout area is (choose nearest value):
Solution: $\mathrm{L}=\lambda \mathrm{W} \Rightarrow \mathrm{W}=\mathrm{L} / \lambda=0.91 / 0.5=1.82$ minutes
a. 1 minute
b. 1.25 minutes
c. 1.5 minutes
d. 1.75 minutes
e. 2 minutes
f. 2.25 minutes
g. 2.5 minutes
h. >2.5 minutes

Match the birth/death diagram with the queue classification:

\qquad

```
<><><><> 57:022 Principles of Design II <><><><>
    Quiz #10 -- April 24, }200
```


Consider the following situation:

A machine operator has sole responsibility for keeping three semi-automatic machines busy. The time required to ready a machine (unloading \& reloading) has exponential distribution with mean 15 minutes. The machine will then run unattended for an average of 1 hour (but with actual time having exponential distribution) before it requires the operator's attention again.

1. The Markov chain model diagrammed above is (select one or more):
a. an $M / M / 1 / 3 / 3$ queue
b. a Poisson process
c. a Birth-Death process
d. an $M / M / 1$ queue
e. an $M / M / 3$ queue
f. an $M / M / 1 / 3$ queue
2. The value of λ_{2} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$.
d. $4 / \mathrm{hr}$.
e. $0.5 / \mathrm{hr}$.
f. none of the above
3. The value of μ_{2} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$.
d. $4 / \mathrm{hr}$.
e. $0.5 / \mathrm{hr}$.
f. none of the above
4. The value of λ_{0} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$.
d. $4 / \mathrm{hr}$.
e. $0.5 / \mathrm{hr}$.
f. none of the above
5. The steady-state probability π_{0} is computed by solving
a. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3} \approx \frac{1}{0.366}$
b. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\frac{1}{2} \times \frac{3}{4}+\frac{1}{4} \times \frac{1}{2} \times \frac{3}{4} \approx \frac{1}{0.451}$
c. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\frac{1}{2}+\frac{1}{4} \approx \frac{1}{0.4}$
d. $\frac{1}{\pi_{0}}=1+\frac{1}{4}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{3} \approx \frac{1}{0.753}$
e. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{3} \approx \frac{1}{0.496}$
f. none of the above
6. The operator will be busy what fraction of the time? (choose nearest value)
a. 30%
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65%
i. 70%
7. What fraction of the time will the operator be busy but with no machine waiting to be serviced? (choose nearest value)
a. 30%
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65%
i. 70%
8. Approximately 2.2 machines per hour require the operator's attention. What is the average length of time that a machine waits before the operator begins to ready the machine for the next job? (select nearest value)
a. 0.1 hr . (i.e., 6 min .)
b. 0.15 hr . (i.e., 9 min .)
c. 0.2 hr . (i.e., 12 min .)
d. 0.25 hr . (i.e., 15 min .)
e. 0.3 hr . (i.e., 18 min .)
f. greater than 0.33 hr . (i.e., >20 min.)
9. What will be the utilization of this group of 3 machines? (choose nearest value)
a. 30%
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65%
i. 70%

<><><><> 57:022 Principles of Design II <><><><>
 Quiz \#10 Solution -- Spring 2000

Consider the following situation:

A machine operator has sole responsibility for keeping three semi-automatic machines busy. The time required to ready a machine (unloading \& reloading) has exponential distribution with mean 15 minutes. The machine will then run unattended for an average of 1 hour (but with actual time having exponential distribution) before it requires the operator's attention again.

_b,c,g 1. The Markov chain model diagrammed above is (select one or more):
a. a discrete-time Markov chain b. a continuous-time Markov chain
c. a Birth-Death process
d. an $\mathrm{M} / \mathrm{M} / 1$ queue
e. an $M / M / 3$ queue
f. an $\mathrm{M} / \mathrm{M} / 1 / 3$ queue
g. an $M / M / 1 / 3 / 3$ queue
h. a Poisson process

Note: in the answers below, the state of the system is defined to be the number of machines which require the operator's attention.
a 2. The value of λ_{2} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$.
d. $4 / \mathrm{hr}$.
e. $0.5 / \mathrm{hr}$.
f. none of the above
d 3. The value of μ_{2} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$.
d. $4 / \mathrm{hr}$.
e. $0.5 / \mathrm{hr}$.
f. none of the above
- 4. The value of λ_{0} is
a. $1 / \mathrm{hr}$.
b. $2 / \mathrm{hr}$.
c. $3 / \mathrm{hr}$.
d. $4 / \mathrm{hr}$.
e. $0.5 / \mathrm{hr}$.
f. none of the above
_ b_ 5. The steady-state probability π_{0} is computed by solving
$\begin{array}{ll}\text { a. } \frac{1}{\pi_{0}}=1+\frac{3}{4}+\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3} \approx \frac{1}{0.366} & \text { b. } \frac{1}{\pi_{0}}=1+\frac{3}{4}+\frac{1}{2} \times \frac{3}{4}+\frac{1}{4} \times \frac{1}{2} \times \frac{3}{4} \approx \frac{1}{0.451}\end{array}$
c. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\frac{1}{2}+\frac{1}{4} \approx \frac{1}{0.4}$
d. $\frac{1}{\pi_{0}}=1+\frac{1}{4}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{3} \approx \frac{1}{0.753}$
e. $\frac{1}{\pi_{0}}=1+\frac{3}{4}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{3} \approx \frac{1}{0.496}$
f. none of the above
_f 6. The operator will be busy what fraction of the time? (choose nearest value)
a. 30%
b. 35%
c. 40%
d. 45%
e. 50%
f. 55\%
g. 70%
h. 65%
i. 70%
_ b_ 7. What fraction of the time will the operator be busy but with no machine waiting to be serviced? (choose nearest value)
a. 30%
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 70%
h. 65%
i. 70%

Note: $\pi_{1}=\pi_{0}(3 / 4)=34 \%$, etc.
i.e., $\pi_{0}=0.4507, \pi_{1}=0.338, \pi_{2}=0.169, \pi_{3}=0.04225$
_f 8. Approximately 2.2 machines per hour require the operator's attention. What is the average length of time that a machine waits before the operator begins to ready the machine for the next job? (select nearest value)
a. 0.1 hr . (i.e., 6 min .)
b. 0.15 hr . (i.e., 9 min .)
c. 0.2 hr . (i.e., 12 min .)
d. 0.25 hr . (i.e., 15 min .)
e. 0.3 hr . (i.e., 18 min .)
f. greater than 0.33 hr . (i.e., $>20 \mathrm{~min}$.)

Note: $\mathrm{L}=\sum_{\mathrm{n}=0}^{3} \mathrm{n} \pi_{0}=0.8, \mathrm{~W}=\mathrm{L} / \lambda=0.8 / 2.2=0.365$
_i_9. What will be the utilization of this group of 3 machines? (choose nearest value)
a. 30%
b. 35%
c. 40%
d. 45%
e. 50%
f. 55%
g. 60%
h. 65%
i. 70%

Note: The average number of machines in operation is 3-L $=2$ 197. Hence, each machine is in use about $2.197 / 3=73 \%$ of the time.

