Name		

57:022 Principles of Design II Midterm Exam - Spring 2000 ***************

Part:	I	II	III	Total
Possible Pts:	13	15	24	52
Your score:				

***** PART I ****

Choose the answers to the questions below from the list of distributions, or the table of probabilities. (State

NONE" if the answer does not		V.
TEL C C		1 0 4 1 1 1
		he average, 8 castings are made each day, and
1 in every 5 castings made is		1 1 2 6
		e made in one day? Choose nearest value:
a. ≤ 20%	b. 30%	c. 40%
d. 50%	e. 60%	f. 70%
g. 80%	h. 90%	i. 100%
2. What's the <i>name</i> of th	e probability dist'n of the quality of ca	sting #5 (either defective or OK)?
3. If the section makes 8	castings on Monday, what is the prob	ability that exactly 2 of these will be
defective? Choose neares	t value:	
a. ≤ 20%	b. 30%	c. 40%
d. 50%	e. 60%	f. 70%
g. 80%	h. 90%	i. 100%
	1111111111	
Advertising states that, for a	certain lottery ticket, "every fifth ticke	t carries a prize". If you buy eight tickets,
what is		
_ 4. the <i>probability</i> that you	a get at least one winning ticket amor	ig the eight? Choose nearest value:
a. ≤ 20%	b. 30%	c. 40%
d. 50%	e. 60%	f. 70%
g. 80%	h. 90%	i. 100%
5. the <i>probability</i> that you	get exactly one winning ticket? Cho	ose nearest value:
a. $\leq 20\%$	b. 30%	c. 40%
d. 50%	e. 60%	f. 70%
g. 80%	h. 90%	i. 100%
	dvance how many tickets to buy, you c	ontinue buying tickets until you have a
winning ticket		

____ 6. what's the *name* of the probability distribution of the number of tickets you buy?

If you continue buying tickets until you have two winning tickets...

____ 7. what's the *name* of the probability distribution of the number of tickets you buy?

The arrival of parts to be processed by a machine is a Poisson process, with the rate 4/hour. What is...

- 8. the *name* of the probability distribution of the number of parts which arrive during the first hour?
- 9. the *name* of the probability distribution of the time between arrivals of parts?

Name			

XX 71 .	•	. 1		C	
What	10	the	name	\cap t	

- ____ 10. The probability distribution of the maximum of a large number of failure times, none of which has an upper bound.
- ____ 11. The probability distribution of the minimum of a large number of failure times (all of which are nonnegative).

Some common probability distributions:

A. Bernouilli	F. Exponential	K. Uniform
B. Normal	G. Beta	L. Poisson
C. Lambda	H. Erlang	M Pascal
D Binomial	I. Geometric	N. Random
E. Chi-square	J. Weibull	O. Gumbel

Binomial distribution (n= 8, p= 0.2)

x	P{x}	$P\{X \leq x\}$	P{X > x}
0	0.16777216	0.16777216	0.83222784
1	0.33554432	0.50331648	0.49668352
2	0.29360128	0.79691776	0.20308224
3	0.14680064	0.94371840	0.05628160
4	0.04587520	0.98959360	0.01040640
5	0.00917504	0.99876864	0.00123136
6	0.00114688	0.99991552	0.00008448
7	0.00008192	0.99999744	0.00000256
8	0.00000256	1.00000000	0.00000000

(Exponential distribution (Lambda = 0.5/minute)

t	$\mathbb{P}\big\{\mathtt{T}\leqt\big\}$	$\Delta \mathtt{p}$	P{T ≥ t}
0	0.00000000	0.00000000	1.0000000
0.5	0.22119922	0.22119922	0.77880078
1	0.39346934	0.17227012	0.60653066
1.5	0.52763345	0.13416411	0.47236655
2	0.63212056	0.10448711	0.36787944
2.5	0.71349520	0.08137464	0.28650480
3	0.77686984	0.06337464	0.22313016
3.5	0.82622606	0.04935622	0.17377394
4	0.86466472	0.03843866	0.13533528
4.5	0.89460078	0.02993606	0.10539922
5	0.91791500	0.02331423	0.08208500
5.5	0.93607214	0.01815714	0.06392786
6	0.95021293	0.01414079	0.04978707
6.5	0.96122579	0.01101286	0.03877421
7	0.96980262	0.00857682	0.03019738
7.5	0.97648225	0.00667964	0.02351775
8	0.98168436	0.00520211	0.01831564
8.5	0.98573577	0.00405140	0.01426423
9	0.98889100	0.00315524	0.01110900
9.5	0.99134830	0.00245730	0.00865170
10	0.99326205	0.00191375	0.00673795

Poisson Cumulative Distribution Function, expected value 1.6

X -	$P\{X \leq x\}$	P{X > x}
0	0.20189652	0.79810348
1	0.52493095	0.47506905
2	0.78335849	0.21664151
3	0.92118651	0.07881349
4	0.97631772	0.02368228
5	0.99395971	0.00604029
6	0.99866424	0.00133576
7	0.99973956	0.00026044
8	0.99995462	0.00004538
9	0.99999286	0.00000714

Multiple Choice:

____ 12. In simulating the arrival process in (16) & (17) above, an inter-arrival time T can be randomly generated by obtaining a uniformly-generated random variable X and computing

a.
$$T = -\frac{\ln{(1-X)}}{4}$$

d.
$$T = -\frac{\ln X}{4}$$

b.
$$T = 1 - e^{-4X}$$

e.
$$T = e^{-4X}$$

c. Both (a) & (d) are correct

f. Both (b) & (e) are correct

 $\underline{}$ 13. The CDF of the distribution in (12) above, i.e., the inter-arrival times, is F(t) =

a.
$$1 - e^{-4X}$$

b.
$$4 e^{-4X}$$

a.
$$1 - e$$

c. $1 - 4 e^{-4X}$
e. e^{-4X}

d.
$$4 e^{-4X}$$

f. None of the above

***** PART II *****

The time between arrivals of cars are measured for 3 hours. It is expected that these observations have an exponential distribution with mean of 4 minutes (although the actual average value of the observations was 3.68 minutes). We wish to decide whether the discrepancy between the assumed arrival rate (one every 4 minutes) and the observed arrival rate (one every 3.68 minutes) is so large as to disqualify our assumption. The number of observations O_i falling within each of several intervals is shown in the table below. We wish to test the "goodness of fit" of the exponential distribution with mean 4 minutes, and have prepared the table below:

i					$\left(O_{i}-E_{i}\right)^{2}$
	interval	O_{i}	p_{i}	Ei	$\frac{\mathbf{C} \cdot \mathbf{A}}{\mathbf{E}_{i}}$
1	[0, 1]	12	0.221199	11.06	0.0798984
2	[1, 2]	11	0.17227	8.61351	0.661212
3	[2, 3]	6	0.134164	6.70821	0.0747674
4	[3, 5]	6	0.185862	9.29309	1.16693
5	[5, 9]	10	0.181106	9.05528	0.098561
6	[9, +∞]	5	0.105399	5.26996	0.0138291

Notes: (i) the total number of observations was not determined in advance, but happens to be 50.

(ii) the sum of the last column is D=2.0952. A portion of a table of the chi-square distribution is given below:

deg.of		Chi	-square Dist'n P{	$D \ge \chi^2$		
freedom	99%	95%	90%	10%	5%	1%
2	0.0201	0.103	0.211	4.605	5.991	9.210
3	0.115	0.352	0.584	6.251	7.815	11.341
4	0.297	0.711	1.064	7.779	9.488	13.277
5	0.554	1.145	1.610	9.236	11.070	15.086
6	0.872	1.635	2.204	10.645	12.592	16.812

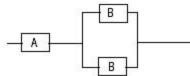
	Name					
7	1.239	2.167	2.833	12.017	14.067	18.475
	1.237	2.107	2.033	12.017	11.007	10.175
Indica	te whether true or	false, using "+" fo	or true, " $oldsymbol{o}$ " for fal	se.		
		the inter-arrival t				
				n was assumed to b		
				ion with mean 4 m	inutes, then (base	d upon the table
	4. The quantity	pability that D exc $y \sum_{i=1}^{6} \frac{\left(O_i - E_i\right)^2}{E_i}$ the value of D, th	is assumed to ha	s than 10%. ve a "chi-square" of the distribution be	distribution.	
				vations in interval		ion is true.
	7. The probabi	lity pi that a car ar	rives in interval #	\$4, i.e., [3,4], is F	(3) - F(4), where	F(t) is the CDF of
	the interarrival 8. If the gende		r is recorded also	, with $X_n=1$ if the	driver of car #n is	female (0
	otherwise), the	n the sequence {X	1, X ₂ , X ₃ , X ₄ ,	.} forms a Bernou	illi process.	
		ption above (that the cars forms a Poiss		arrivals have exp	onential distributi	on) is correct, the
	10. The number cells in the hist	-	reedom" of the ch	i-square distribution	on for this test wil	l be 6, the number of
	•	n these observation inter-arrival time	•	al distribution with	mean 4 minutes s	should be rejected as
				of-fit test will have s a random variabl		
	distribution wi	th $n = 4$ and probab	oility of "success"	$p = p_i$.		
	14. The quant	ity Ei is a random	variable with app	roximately a Poiss	on distribution.	
	15. The quanti	ty D is assumed to	have approxima	tely a Normal distr	ribution.	
		**	**** PART	` III	*	
	failures every	100 hours. The tes	st is interrupted a	nneously lighting t t the end of 1000 h lity model is then '	ours, when 291 b	ng the number of oulbs have failed. As
For ea		icate "+" for true,		which are curvivir	ag at tima t	

For each	h statement, indicate "+" for true, "o" for false:
	1. The quantity R_t is the fraction of the 500 bulbs which are surviving at time t .
	2. The Weibull distribution is usually appropriate for the minimum of a large number of nonnegative random variables.
	3. If the failure rate is known to be decreasing, it may be more appropriate to use the Gumbel distribution than the Weibull distribution.
	4. We assume that the number of survivors at time t , $N_S(t)$, has a Weibull distribution.
	5. The Weibull CDF, i.e., F(t), gives, for each bulb, the probability that at time t it has already failed.6. The method used to estimate the Weibull parameters u & k requires that you compute the mean and standard deviation of the 291 bulbs which have failed.
	 7. The Minitab program fits a line which minimizes the maximum error. 8. Regression analysis (as performed by Minitab, for example) can be used to fit a function of the form Y= a b^X.
	9. The sum of the CDF (cumulative distribution function) F(t) and the Reliability function R(t) is always equal to 1 for <i>every</i> probability distribution.
	10. The exponential distribution is a special case of the Weibull distribution, with constant failure rate.
	11. A positive value of $ln k$ indicates an increasing failure rate, and negative $ln k$ indicates a decreasing failure rate

distribution.

12. If each bulb's lifetime has an exponential distribution, the time of the $10^{\hbox{th}}$ failure has 10-Erlang

- 13. If 6 bulbs are installed in an office's light fixtures, the number still functioning after 1000 hours has a Weibull distribution.
- 14. Regression analysis (as performed by Minitab, for example) can be used to fit a function of the form $Y=a+X^b$.
- 15. If k=1, then $\Gamma (1 + \frac{1}{1_c}) = 1$.
- 16. If 10 bulbs are installed in an office's light fixtures, the number still functioning after 1000 hours has a Poisson distribution.
- 17. Regression analysis (as performed by Minitab, for example) can be used to fit a function of the form $Y = aX^b$.
- 18. Given only the coefficient of variation for the Weibull distribution (the ratio σ_{μ} but not $\mu \& \sigma$), the Weibull shape parameter k but *not* the scale parameter u can be computed.
- 19. Regression analysis (as performed by *Minitab*, for example) can be used to fit a function of the form
- 20. The "gamma" function has the property $\Gamma(x) = x!$ for all nonnegative integer values of x.
- 21. If components A and B are both 60% reliable, the reliability of the system represented below is (choose nearest value):

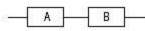


d. 40%

b. 20% e. 50% c. 30% f. 60%

g. 70% h. 80% i. 90%

22. If component A is 70% reliable and B is 60% reliable, the reliability of the system below is (choose nearest value):



a. $\leq 10\%$ d. 40%

b. 20% e. 50%

c. 30% f. 60%

g. 70% h. 80% i. 90%

23. If F(t) is the CDF of the lifetime of each of 10 devices in a system (and f(t) the density function), then the CDF of time of the final unit to fail is

a. $[F(t)]^{10}$

b.
$$[1 - F(t)]^{10}$$
 c. $[f(t)]^{10}$

d. $[1 - f(t)]^{10}$

e. None of the above

24. Suppose that the time between arriving cars has exponential distribution, with average of 15 seconds, and a pedestrian requires 30 seconds between cars in order to cross the highway. Then the probability that the pedestrian is still waiting after 5 cars have arrived is a. $2e^{-2(5)}$ b. $\left(e^{-2}\right)^5$ c. $1-e^{-2(5)}$ d. $\left(1-e^{-2}\right)^5$ e. None of the above

a.
$$2e^{-2(5)}$$

c.
$$1 - e^{-2(5)}$$

$$d.(1-e^{-2})^{5}$$