Name_

			nciples o um Ma	U				
Part	Ι	П	Ш	IV	V	VI	VII	Total
Your score:								
Possible	7	16	12	18	7	12	8	80
Topics:								
Part I: Probability distributions			Part V. I	Reliability	v estimate	es from lif	e-test da	nta
Part II. Project scheduling		Part VI. Birth-death queues						
Part III. Weibull model of reliability			Part VII.	Network	ts of queu	ies		
Part IV. System reliability					•			

Part I. Probability Distributions For each probability distribution below, indicate by "C" or "D" whether the corresponding random variable is <u>Continuous or Discrete</u>.

Part II. Project Scheduling

____1. An ARENA model of a project is more similar to an AOA network model than an AON network model of the project.

- ____2. The quantity ET(i) [i.e. earliest time] for each node i is determined by a <u>forward pass</u> through the network.
- ____3. If an activity is represented by an arrow from node i to node j, then LS (latest start time) for that activity is LT(i).
- ____4. If an activity is represented by an arrow from node i to node j, then EF (early finish time) for that activity is ET(j).
- ____5. If an activity is represented by an arrow from node i to node j, then that activity has zero "float" or "slack" if and only if ET(i)=LT(i).
- ____6. An activity is critical if and only if its total float ("slack") is zero.
- ____7. A "dummy" activity cannot be critical.
- ____8. The mean value of the duration of activity is equal to its most likely value, if the probability distribution is triangular.
- ____9. PERT assumes that each activity's duration has a Normal distribution.
- ____10. PERT assumes that the project duration has a Normal distribution.
- ____11. Except perhaps for "begin" and "end" activities, "dummy" activities are unnecessary in the "Activity-on-Node" representation of a project.
- ____12. The project network below is of the AOA form.

- 13. An ARENA model to simulate the above project will require the following numbers of nodes of each type:
 - ARRIVE nodes _____ BATCH nodes _____ BATCH nodes _____ DUPLICATE nodes _____ DEPART nodes
 - DELAY nodes
- 14. The critical path in the above project consists of _____ activities and is length _____ .

Part III. Weibull Model of Reliability. An electronic device is made up of a large number of components. Every component is essential, so that the device will fail when the first component fails. The lifetime of each individual component is random, but its probability distribution is unknown. The manufacturer, who has provided a 90-day warranty on this device, has decided to use the Weibull reliability model.

Name

For each statement, indicate "+" for true, "o" for false:

- 1. A k>1 indicates an increasing failure rate, and k<1 indicates a decreasing failure rate.
- 2. We assume that the lifetime of a component has a Weibull distribution.
- ____ 3. The Weibull density function, i.e., f(t), gives, for each component, the probability that at time t it has already failed.
- 4. The exponential distribution is a special case of the Weibull distribution, with failure rate zero.
- 5. The sum of the CDF (cumulative distribution function) F(t) and the Reliability function R(t), i.e. F(t) + R(t), is always equal to 1 if the Weibull probability model is assumed.
- 6. If 10 of the devices are installed in a manufacturing system, the number still functioning after 100 days has a Weibull distribution.

It has been determined that *average* lifetime of the device is 300 days and the *standard deviation* is 200 days.

 7. Based upon the above probability dist'n is app			, the value of th	e "shape" parame	ter (k) of the
a. 0.1	b. 0.5	c. 1.0	d. 1.5	e. 2.0	f. 2.5
 8. The value of the "loo <i>value</i>).	cation" parameter (u)) of the probabilit	ty dist'n is appro	oximately (choose	nearest
 a. 100 9. The failure rate is	b. 200	c. 300	d. 400	e. 500	f. ≥600
a. increasing	b. decreasing	c. constant	t d. c	annot be determin	ned
 10. The percent of the value):	units which are expe	cted to fail during	g the 90-day wa	rranty period is (c.	hoose nearest
10/	1 20/	50/	1 -		20/

a. 1%	b. 3%	c. 5%	d. 7%	e. 9%
f. 11%	g. 13%	h. 15%	i. 17%	j. 19%

T	Table 1: $\Gamma\left(1 + \frac{1}{k}\right)$ (For example, if k=0.5 then $G(1 + 1/k) = 2$.)									
	0.0	0.1	0.2 (0.3 0.4	0.5	0.6 0	.7 0.8	0.9		
0	~	362880.	120.000	9.26053	3.32335	2.00000	1.50458	1.26582	1.13300	1.05218
1	1.00000	0.96491	0.94066	0.92358	0.91142	0.90275	0.89657	0.89224	0.88929	0.88736
2	0.88623	0.88569	0.88562	0.88591	0.88648	0.88726	0.88821	0.88928	0.89045	0.89169
3	0.89298	0.89431	0.89565	0.89702	0.89838	0.89975	0.90111	0.90245	0.90379	0.90510
4	0.90640	0.90768	0.90894	0.91017	0.91138	0.91257	0.91374	0.91488	0.91600	0.91710
5	0.91817	0.91922	0.92025	0.92125	0.92224	0.92320	0.92414	0.92507	0.92597	0.92685

Table 2: Coefficient of variation $\frac{\sigma}{\mu}$ of the Weibull distribution, as a function of k alone (*For example, sim = 0.1968 implies k=5.9.*)

	0.0	0.1	0.2 0.3	0.4	0.5	0.6 (0.7 0.8	0.9		
0			15.84298	5.40769	3.14086	2.23607	1.75807	1.46242	1.26051	1.11303
1	1.00000	0.91022	0.83690	0.77572	0.72375	0.67897	0.63991	0.60548	0.57487	0.54745
2	0.52272	0.50029	0.47983	0.46108	0.44384	0.42791	0.41314	0.39942	0.38662	0.37466
3	0.36345	0.35292	0.34300	0.33365	0.32482	0.31646	0.30853	0.30101	0.29385	0.28704
4	0.28054	0.27435	0.26842	0.26276	0.25733	0.25213	0.24714	0.24235	0.23775	0.23332
5	0.22905	0.22495	0.22099	0.21717	0.21348	0.20991	0.20647	0.20314	0.19992	0.19680

Name _____

Part IV. System Reliability A system consists of five components (A,B,C,D, &E). The probability that each component *fails during the first year* of operation is 30% for A, B, and C, and 40% for D and E. For each alternative (a) and (b), indicate:

- the number of the reliability diagram below which represents the system.
- the computation of the 1-year reliability (i.e., survival probability)
- the ARENA model which would simulate the system's lifetime

<u>Diagram</u>	Reliability	ARENA	
			1. The system requires that all of A, B, & C function, <u>and</u> that either D or E function.
			2. The system will fail if all of A, B, and C fails or if both D and E fail.

Diagrams:

Reliabilities:

- 1. $(0.7)^3(0.6)^2 = 12.3\%$
- 3. $(.7)^3(1-[.4]^2) = 28.8\%$

5.
$$[1-(0.3)^3][1-(0.4)^2] = 81.7\%$$

7.
$$[1-(0.3)^3](0.6)^2 = 35.0\%$$

2. 1- [1-(0.7)³] [1-(0.6)²] = 57.9%
 4. 1 - (0.3)³(0.4)² = 94.5%
 6. 1 - [1-(0.3)³] [1- (0.4)²] = 18.3%
 8. None of the above

ARENA models:

(5) None of the above

Part V. Reliability from Life-Test data

Name

Suppose that your company wishes to estimate the reliability of an electric motor. Two hundred units are tested simultaneously, and the time(in days) of failures is recorded until 200 days have passed. The table below gives the failure times of the 5^{th} , 10^{th} , 15^{th} , etc. motor. After the 95^{th} motor had failed, it was necessary to interrupt the test for lack of time. It is expected that a Weibull reliability model will provide good results.

÷ .		F · · · · · ·			enneg med		P-0.1-00	. <u>Bood 16</u> 84		
	NF	t	R(t)	ln(t)	ln ln	NF	t	R(t)	ln(t)	ln ln
					1/R(t)					1/R(t)
	5	81	.975	4.39	-3.67	50	153	0.75	5.03	-1.25
	10	92	.95	4.52	-2.97	55	156	0.725	5.05	-1.13
	15	107	.925	4.67	-2.55	60	163	0.75	5.09	-1.03
	20	120	.9	4.78	-2.25	65	166	0.674	5.12	-0.93
	25	125	.875	4.83	-2.01	70	170	0.65	5.13	-0.84
	30	132	.85	4.88	-1.82	75	172	0.625	5.15	-0.76
	35	140	.825	4.94	-1.65	80	178	0.6	5.18	-0.67
	40	144	.8	4.97	-1.5	85	182	0.575	5.21	-0.59
	45	148	.775	5.00	-1.37	90	190	0.55	5.25	-0.51
	50	156	.75	5.03	-1.25	95	193	0.525	5.26	-0.44

Then Ln Ln 1/R(t) was plotted vs Ln(t):

The line which most nearly fits this data has slope 3.7 and vertical-intercept -20.

The parameters of the Weibull distribution are next estimated:

____1. the shape parameter (k) is (choose nearest value):

a. 1 b. 2 c. 3 d. 4 e. 5 f. 6 g. 7 h. 8 i. 9 j. 10 ____2. the scale parameter (u) is (choose nearest value):

- a. 100 b. 200 c. 300 d. 400 e. 500 f. 600 g. 700 h. 800 i. 900 j. 1000
- _____3. If the test had been continued until all of the motors had failed, the mean failure time (in days) would have been (choose nearest value):
 - a. 100 b. 200 c. 300 d. 400 e. 500 f. 600 g. 700 h. 800 i. 900 j. 1000

Part VI. Birth-death Processes

Customers arrive at the rate of 1/hour at a queue with a single server and a capacity of 2 customers (plus the one being served.) The average time to serve a customer is 30 minutes, with exponential distribution.

1. The <i>utilization</i> , i.e., steady-st	ate probability that the	server is busy, is $1 - \pi_0 = (ch)$	hoose nearest value):
a. ≤15%	b. 30%	c. 45%	d. 50%
e. 55%	5. 60%	f. 70%	g. ≥80%
2. If the queue had infinite capac	tity, the utilization of the	e server would be (choose ne	earest value):
a. ≤15%	b. 30%	c. 45%	d. 50%
e. 55%	5. 60%	f. 70%	g. ≥80%

Name _____

Suppose that the average arrival rate is 0.93/hour and the average number of customers in the system (including the customer being served) is 0.73.

3. From this we can deduce that the average time that each customer *waits* before its service begins is (choose nearest value):

a. 10 min.	b. 20 min.	c. 30 min.	d. 40 min.
e. 50 min.	5. 60 min.	f. 70 min.	g. 80 min.

Suppose that customers may get impatient of waiting to be served, and that the average time that they are willing to wait is 15 minutes.

4. The "death" rate μ_2 in state 2 is now (choose nearest value):							
a. 1/hr	b. 2/hr	c. 3/hr	d. 4/hr	e. 5/hr			
f. 6/hr	g. 7/hr	h. 8/hr	i. 9/hr	j. 10/hr			
5. The "death" rate μ_1	in state 3 is no	ow (choose nearest	value):				
a. 1/hr	b. 2/hr	c. 3/hr	d. 4/hr	e. 5/hr			
f. 6/hr	g. 7/hr	h. 8/hr	i. 9/hr	j. 10/hr			

Part VII. Queueing networks

Consider a system which processes two types of jobs. Type 1 jobs arrive on average twice per hour, and type 2 jobs arrive on average once per hour. Both jobs arrive first at Station A, where there are three processors. Type 1 jobs require an average of one hour of processing and are then are routed to Station B, where there are two processors. An average of 15 minutes of processing time is required at Station B. Type 2 jobs require an average of 30 minutes first at Station A and then 30 minutes at Station C (which has a single processor.) Processing times are assumed to have *exponential* distributions.

The software system RAQS (Rapid Analysis of Queueing Systems) yields the output below. Use it to answer the following questions:

1. Which type of job spends more time in the system?							
a. Type 1	b. Type 2	c. No difference	d. Cannot be determined				
2. What fraction of the day is a p	processor at Station A b	ousy? (Choose nearest value)					
a. ≤40%	b. 50%	c. 60%	d. 70%				
e. 80%	f. 90%	g. 100%	h. Cannot be determined				

Suppose that the processing time for job type 1 at station A has *Erlang-2* distribution (instead of *Exponential* distribution), but has the same mean value as before.

3. Then for this distri	bution the value of SC	CV in the RAQS dialog box	should be revised to: (C	hoose nearest value)
a. 0.2	5 b.	0.5 с.	0.707	d. 1.00
e. 1.4	14 f. 1	2 g.	No change	
4. We should expect	that the average time s	spent at Station A will		
a. inc	crease b.	decrease c.	no change	

RAQS Input information

This Model has been developed in the Intermediate Mode Type of Network - Open Network

```
Number of nodes = 3
Number of classes = 2
Node No.of servers
1
  3
2
   2
3
  1
Class Information
Class Arrival Arrival # of
    Rate SCV Visits
    2.00
           1.00
                 2
1
    1.00 1.00 2
2
Route Information
Class 1 information
Visit Node Service Mean SCV
1
    1 1.00 1.000
2
    2
        0.25
                1.000
Class 2 information
Visit Node Service Mean SCV
1
    1
         0.50 1.000
                 1.000
2 3 0.50
```

```
RAQS Output Report
```

```
Network Measures
Average Number in the Network = 7.804
Average Response Time = 2.601
Node Measures
Node Rho AvTAN VarTAN AvNAN VarNAN AvTIQ VarTIQ AvNIQ
  1 0.833 2.088 3.057 6.265 25.668 1.255 2.252 3.765
  2 0.250 0.267 0.065 0.535 0.356 0.017 0.002
                                                         0.035
  3 0.500 1.004 1.003 1.004 2.008 0.504 0.753
                                                        0.504
Class Specific Output
Class AvRT VarRT
   1
      2.522
              3.316
      2.759 3.505
   2
Thruput - Output rate per server at a node
AvTAN - Average time spent at a node
AvNAN - Mean number of customers at a node
AvTIQ - Average waiting time in queue at a node
AvNIQ - Mean queue length at a node
AvRT - Average time spent in the network by a customer in a class
```