\qquad

57:022 Principles of Design II
 Final Exam -- May 8, 2000

Part	I	II	III	IV	V	VI	VII	Total
Your score:								
Possible	7	16	12	18	7	12	8	80

Topics:
Part I: Probability distributions
Part II. Project scheduling
Part III. Weibull model of reliability
Part IV. System reliability

Part V. Reliability estimates from life-test data
Part VI. Birth-death queues
Part VII. Networks of queues

Part I. Probability Distributions For each probability distribution below, indicate by " C " or " D " whether the corresponding random variable is Continuous or Discrete.
__1. Uniform
2. Beta
3. Geometric
4. Binomial
5. Poisson
___6. Weibull
7. Triangular
8. Pascal (negative binomial)
9. Exponential
10. Normal
11. Chi-square
_12. Bernouilli
\qquad
\qquad
13. Erlang-k with $\mathrm{k}>1$
14. Gumbel

Part II. Project Scheduling

___1. An ARENA model of a project is more similar to an AOA network model than an AON network model of the project.
___2. The quantity ET(i) [i.e. earliest time] for each node i is determined by a forward pass through the network.
_3. If an activity is represented by an arrow from node i to node j, then LS (latest start time) for that activity is LT(i).
___4. If an activity is represented by an arrow from node i to node j , then EF (early finish time) for that activity is ET(j).
5. If an activity is represented by an arrow from node i to node j, then that activity has zero "float" or "slack" if and only if $\mathrm{ET}(\mathrm{i})=\mathrm{LT}(\mathrm{i})$.
_6. An activity is critical if and only if its total float ("slack") is zero.
___7. A "dummy" activity cannot be critical.
_8. The mean value of the duration of activity is equal to its most likely value, if the probability distribution is triangular.
__9. PERT assumes that each activity's duration has a Normal distribution.
10. PERT assumes that the project duration has a Normal distribution.
___11. Except perhaps for "begin" and "end" activities, "dummy" activities are unnecessary in the "Activity-onNode" representation of a project.
__12. The project network below is of the AOA form.

13. An ARENA model to simulate the above project will require the following numbers of nodes of each type:
___ ARRIVE nodes DUPLICATE nodes DELAY nodes
14. The critical path in the above project consists of \qquad activities and is length \qquad .
\qquad

Part III. Weibull Model of Reliability. An electronic device is made up of a large number of components. Every component is essential, so that the device will fail when the first component fails. The lifetime of each individual component is random, but its probability distribution is unknown. The manufacturer, who has provided a 90-day warranty on this device, has decided to use the Weibull reliability model.

For each statement, indicate " + " for true, "o" for false:
- 1. A $\mathrm{k}>1$ indicates an increasing failure rate, and $\mathrm{k}<1$ indicates a decreasing failure rate.
-_- 2. We assume that the lifetime of a component has a Weibull distribution.
___ 3. The Weibull density function, i.e., $\mathrm{f}(\mathrm{t})$, gives, for each component, the probability that at time t it has already failed.
__ 4. The exponential distribution is a special case of the Weibull distribution, with failure rate zero.
- 5. The sum of the CDF (cumulative distribution function) $F(t)$ and the Reliability function $R(t)$, i.e. $F(t)+R(t)$, is always equal to 1 if the Weibull probability model is assumed.
6. If 10 of the devices are installed in a manufacturing system, the number still functioning after 100 days has a Weibull distribution.

It has been determined that average lifetime of the device is 300 days and the standard deviation is 200 days.
7. Based upon the above information and the table(s) below, the value of the "shape" parameter (k) of the probability dist'n is approximately (choose nearest value).
a. 0.1
b. 0.5
c. 1.0
d. 1.5
e. 2.0
f. 2.5

8 . The val value).

a. 100
b. 200
c. 300
d. 400
e. 500
f. ≥ 600
9. The failure rate is
a. increasing
b. decreasing
c. constant
d. cannot be determined
10. The percent of the units which are expected to fail during the 90-day warranty period is (choose nearest value):
a. 1%
b. 3%
c. 5%
d. 7%
e. 9%
f. 11%
g. 13%
h. 15%
i. 17%
j. 19%

Table 1: $\Gamma\left(1+\frac{1}{k}\right)$ (For example, if $k=0.5$ then $G(1+1 / k)=2$.)

| 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | ∞ | 362880. | 120.000 | 9.26053 | 3.32335 | 2.00000 | 1.50458 | 1.26582 | 1.13300 | 1.05218 |
| 1 | 1.00000 | 0.96491 | 0.94066 | 0.92358 | 0.91142 | 0.90275 | 0.89657 | 0.89224 | 0.88929 | 0.88736 |
| 2 | 0.88623 | 0.88569 | 0.88562 | 0.88591 | 0.88648 | 0.88726 | 0.88821 | 0.88928 | 0.89045 | 0.89169 |
| 3 | 0.89298 | 0.89431 | 0.89565 | 0.89702 | 0.89838 | 0.89975 | 0.90111 | 0.90245 | 0.90379 | 0.90510 |
| 4 | 0.90640 | 0.90768 | 0.90894 | 0.91017 | 0.91138 | 0.91257 | 0.91374 | 0.91488 | 0.91600 | 0.91710 |
| 5 | 0.91817 | 0.91922 | 0.92025 | 0.92125 | 0.92224 | 0.92320 | 0.92414 | 0.92507 | 0.92597 | 0.92685 |

Table 2: Coefficient of variation $\frac{\sigma}{\mu}$ of the Weibull distribution, as a function of k alone (For example, $\sigma \mu=0.1968$ implies $k=5.9$.)

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
0	---	---	15.84298	5.40769	3.14086	2.23607	1.75807	1.46242	1.26051	1.11303		
1	1.00000	0.91022	0.83690	0.77572	0.72375	0.67897	0.63991	0.60548	0.57487	0.54745		
2	0.52272	0.50029	0.47983	0.46108	0.44384	0.42791	0.41314	0.39942	0.38662	0.37466		
3	0.36345	0.35292	0.34300	0.33365	0.32482	0.31646	0.30853	0.30101	0.29385	0.28704		
4	0.28054	0.27435	0.26842	0.26276	0.25733	0.25213	0.24714	0.24235	0.23775	0.23332		
5	0.22905	0.22495	0.22099	0.21717	0.21348	0.20991	0.20647	0.20314	0.19992	0.19680		

\qquad

Part IV. System Reliability A system consists of five components (A,B,C,D, \&E). The probability that each component fails during the first year of operation is 30% for A, B, and C, and 40% for D and E. For each alternative (a) and (b), indicate:

- the number of the reliability diagram below which represents the system.
- the computation of the 1 -year reliability (i.e., survival probability)
- the ARENA model which would simulate the system's lifetime

Diagram	Reliability	ARENA	
-_-	-	-	1. The system requires that all of $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ function, and that either D or E function.
---	-_-	-	2. The system will fail if all of A, B, and C fails or if both D and E fail.

Diagrams:

Reliabilities:

1. $(0.7)^{3}(0.6)^{2}=12.3 \%$
2. $1-\left[1-(0.7)^{3}\right]\left[1-(0.6)^{2}\right]=57.9 \%$
3. $(.7)^{3}\left(1-[.4]^{2}\right)=28.8 \%$
4. $1-(0.3)^{3}(0.4)^{2}=94.5 \%$
5. $\left[1-(0.3)^{3}\right]\left[1-(0.4)^{2}\right]=81.7 \%$
6. $1-\left[1-(0.3)^{3}\right]\left[1-(0.4)^{2}\right]=18.3 \%$
7. $\left[1-(0.3)^{3}\right](0.6)^{2}=35.0 \%$
8. None of the above

ARENA models:

(5) None of the above

Part V. Reliability from Life-Test data

\qquad

Suppose that your company wishes to estimate the reliability of an electric motor. Two hundred units are tested simultaneously, and the time(in days) of failures is recorded until 200 days have passed. The table below gives the failure times of the $5^{\text {th }}, 10^{\text {th }}, 15^{\text {th }}$, etc. motor. After the $95^{\text {th }}$ motor had failed, it was necessary to interrupt the test for lack of time. It is expected that a Weibull reliability model will provide good results.

NF	t	$\mathrm{R}(\mathrm{t})$	$\ln (\mathrm{t})$	$\ln \ln$ $1 / \mathrm{R}(\mathrm{t})$	NF	t	$\mathrm{R}(\mathrm{t})$	$\ln (\mathrm{t})$	$\ln \ln$ $1 / \mathrm{R}(\mathrm{t})$
5	81	.975	4.39	-3.67	50	153	0.75	5.03	-1.25
10	92	.95	4.52	-2.97	55	156	0.725	5.05	-1.13
15	107	.925	4.67	-2.55	60	163	0.75	5.09	-1.03
20	120	.9	4.78	-2.25	65	166	0.674	5.12	-0.93
25	125	.875	4.83	-2.01	70	170	0.65	5.13	-0.84
30	132	.85	4.88	-1.82	75	172	0.625	5.15	-0.76
35	140	.825	4.94	-1.65	80	178	0.6	5.18	-0.67
40	144	.8	4.97	-1.5	85	182	0.575	5.21	-0.59
45	148	.775	5.00	-1.37	90	190	0.55	5.25	-0.51
50	156	.75	5.03	-1.25	95	193	0.525	5.26	-0.44

Then $\operatorname{Ln} \operatorname{Ln} 1 / R(t)$ was plotted vs $\operatorname{Ln}(t)$:

The line which most nearly fits this data has slope 3.7 and vertical-intercept-20.
The parameters of the Weibull distribution are next estimated:
\qquad 1. the shape parameter (k) is (choose nearest value):
a. 1
b. 2
c. 3
d. 4
e. 5
f. 6
g. 7
h. 8
i. 9 j. 10
\qquad 2. the scale parameter (u) is (choose nearest value):
a. 100
b. 200
c. 300
d. 400
e. 500 f. 600
g. 700
h. 800
i. 900 j. 1000
\qquad 3. If the test had been continued until all of the motors had failed, the mean failure time (in days) would have been (choose nearest value):
a. 100
b. 200
c. 300
d. 400
e. 500
f. 600
g. 700
h. 800
i. 900 j. 1000

Part VI. Birth-death Processes

Customers arrive at the rate of $1 /$ hour at a queue with a single server and a capacity of 2 customers (plus the one being served.) The average time to serve a customer is 30 minutes, with exponential distribution.

___1. The utilization, i.e., steady-state probability that the server is busy, is $1-\pi_{0}=$ (choose nearest value):
a. $\leq 15 \%$
b. 30%
c. 45%
d. 50\%
e. 55%
5. 60%
f. 70%
g. $\geq 80 \%$
\qquad 2. If the queue had infinite capacity, the utilization of the server would be (choose nearest value):
a. $\leq 15 \%$
b. 30%
c. 45%
d. 50%
e. 55%
5. 60%
f. 70%
g. $\geq 80 \%$
\qquad

Suppose that the average arrival rate is 0.93/hour and the average number of customers in the system (including the customer being served) is 0.73.
\qquad 3. From this we can deduce that the average time that each customer waits before its service begins is (choose nearest value):
a. 10 min .
b. 20 min .
c. 30 min .
d. 40 min .
e. 50 min .
5. 60 min .
f. 70 min .
g. 80 min .

Suppose that customers may get impatient of waiting to be served, and that the average time that they are willing to wait is 15 minutes.
___ 4. The "death" rate μ_{2} in state 2 is now (choose nearest value):
a. $1 / \mathrm{hr}$
b. $2 / \mathrm{hr}$
c. $3 / \mathrm{hr}$
d. $4 / \mathrm{hr}$
e. $5 / \mathrm{hr}$
f. $6 / \mathrm{hr}$
g. $7 / \mathrm{hr}$
h. $8 / \mathrm{hr}$
i. $9 / \mathrm{hr}$
j. 10/hr
\qquad 5. The "death" rate μ_{3} in state 3 is now (choose nearest value).
a. $1 / \mathrm{hr}$
b. $2 / \mathrm{hr}$
c. $3 / \mathrm{hr}$
d. $4 / \mathrm{hr}$
e. $5 / \mathrm{hr}$
f. $6 / \mathrm{hr}$
g. $7 / \mathrm{hr}$
h. $8 / \mathrm{hr}$
i. $9 / \mathrm{hr}$
j. $10 / \mathrm{hr}$

Part VII. Queueing networks

Consider a system which processes two types of jobs. Type 1 jobs arrive on average twice per hour, and type 2 jobs arrive on average once per hour. Both jobs arrive first at Station A, where there are three processors. Type 1 jobs require an average of one hour of processing and are then are routed to Station B, where there are two processors. An average of 15 minutes of processing time is required at Station B. Type 2 jobs require an average of 30 minutes first at Station A and then 30 minutes at Station C (which has a single processor.) Processing times are assumed to have exponential distributions.

The software system RAQS (Rapid Analysis of Queueing Systems) yields the output below. Use it to answer the following questions:
__ 1. Which type of job spends more time in the system?
a. Type 1
b. Type 2
c. No difference
d. Cannot be determined
___ 2. What fraction of the day is a processor at Station A busy? (Choose nearest value)
a. $\leq 40 \%$
b. 50%
c. 60%
d. 70%
e. 80%
f. 90%
g. 100%
h. Cannot be determined

Suppose that the processing time for job type 1 at station A has Erlang-2 distribution (instead of Exponential distribution), but has the same mean value as before.
___ 3. Then for this distribution the value of SCV in the RAQS dialog box should be revised to: (Choose nearest value)
a. 0.25
b. 0.5
c. 0.707
d. 1.00
e. 1.414
f. 2
g. No change
\ldots 4. We should expect that the average time spent at Station A will
a. increase
b. decrease
c. no change

```
RAQS Input information
This Model has been developed in the Intermediate Mode
Type of Network - Open Network
```

\qquad

RAQS Output Report

```
Network Measures
Average Number in the Network = 7.804
Average Response Time = 2.601
Node Measures
\begin{tabular}{rllllllll} 
Node & Rho & AvTAN & VarTAN & AvNAN & VarNAN & AvTIQ & VarTIQ & AvNIQ \\
1 & 0.833 & 2.088 & 3.057 & 6.265 & 25.668 & 1.255 & 2.252 & 3.765 \\
2 & 0.250 & 0.267 & 0.065 & 0.535 & 0.356 & 0.017 & 0.002 & 0.035 \\
3 & 0.500 & 1.004 & 1.003 & 1.004 & 2.008 & 0.504 & 0.753 & 0.504
\end{tabular}
Class Specific Output
Class AvRT VarRT
    1 2.522 3.316
    2 2.759 3.505
Thruput - Output rate per server at a node
AvTAN - Average time spent at a node
AvNAN - Mean number of customers at a node
AvTIQ - Average waiting time in queue at a node
AvNIQ - Mean queue length at a node
AvRT - Average time spent in the network by a customer in a class
```

