

Facility Location Problems in the Plane

This Hypercard stack was prepared by:
 Dennis L. Bricker,
 Dept. of Industrial Engineering,
 University of Iowa,
 Iowa City, Iowa 52242
 e-mail: dbricker@icaen.uiowa.edu

 author

Suppose that we wish to select the location of a single facility, anywhere in the plane, to serve a set of demand points.

Given, for each of demand points $j=1, 2, \dots, n$:

(x_j, y_j) coordinates of the point
 β_j cost per unit volume per unit distance
 w_j volume of shipments per unit time

Find coordinates of the source facility, (x, y) , which will minimize the total shipping cost per unit time:

$$\text{Minimize } C(x, y) = \sum_{j=1}^n \beta_j w_j \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

assuming "straight-line", Euclidean distances!

Weber's Problem

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Tie together in a knot ("X") n strings of equal length L

Theorem

The function:

$$C(x, y) = \sum_{j=1}^n \beta_j w_j \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

is convex in (x, y)

A *necessary* condition for (X^*, Y^*) to minimize

$$C(x, y) = \sum_{j=1}^n \beta_j w_j \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

is

$$\begin{cases} \frac{\partial}{\partial X} C(X^*, Y^*) = 0 \\ \frac{\partial}{\partial Y} C(X^*, Y^*) = 0 \end{cases}$$

That is, (X^*, Y^*) should be a "stationary point" of the function C .

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

This condition yields the equations

$$\begin{cases} \sum_{j=1}^n \frac{\beta_j w_j (X^* - x_j)}{\sqrt{(X^* - x_j)^2 + (Y^* - y_j)^2}} = 0 \\ \sum_{j=1}^n \frac{\beta_j w_j (Y^* - y_j)}{\sqrt{(X^* - x_j)^2 + (Y^* - y_j)^2}} = 0 \end{cases}$$

which, unfortunately, we cannot solve analytically for the values of X^* and Y^* !

For convenience, define a distance function for each j :

$$d_j(X, Y) = \sqrt{(X - x_j)^2 + (Y - y_j)^2}$$

Necessary conditions for optimality

$$\begin{cases} \sum_{j=1}^n \frac{\beta_j w_j (X^* - x_j)}{d_j(X^*, Y^*)} = 0 \\ \sum_{j=1}^n \frac{\beta_j w_j (Y^* - y_j)}{d_j(X^*, Y^*)} = 0 \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Rearrange terms:

$$\left\{ \begin{array}{l} X^* \sum_{j=1}^n \frac{\beta_j w_j}{d_j(X^*, Y^*)} = \sum_{j=1}^n \frac{\beta_j w_j x_j}{d_j(X^*, Y^*)} \\ Y^* \sum_{j=1}^n \frac{\beta_j w_j}{d_j(X^*, Y^*)} = \sum_{j=1}^n \frac{\beta_j w_j y_j}{d_j(X^*, Y^*)} \end{array} \right.$$

Necessary Conditions for the Optimality of (X^*, Y^*)

$$X^* = \frac{\sum_{j=1}^n \frac{\beta_j w_j x_j}{d_j(X^*, Y^*)}}{\sum_{j=1}^n \frac{\beta_j w_j}{d_j(X^*, Y^*)}}$$

Note: X^* and Y^* actually appear on both sides of the equations!

$$Y^* = \frac{\sum_{j=1}^n \frac{\beta_j w_j y_j}{d_j(X^*, Y^*)}}{\sum_{j=1}^n \frac{\beta_j w_j}{d_j(X^*, Y^*)}}$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

We will use a "successive substitution" method using these equations to find X^* & Y^*

$$\left\{ \begin{array}{l} X^* = \frac{\sum_{j=1}^n \frac{\beta_j w_j x_j}{d_j(X^*, Y^*)}}{\sum_{j=1}^n \frac{\beta_j w_j}{d_j(X^*, Y^*)}} \\ Y^* = \frac{\sum_{j=1}^n \frac{\beta_j w_j y_j}{d_j(X^*, Y^*)}}{\sum_{j=1}^n \frac{\beta_j w_j}{d_j(X^*, Y^*)}} \end{array} \right.$$

Suppose, at iteration k , we have an approximate solution (X^k, Y^k) . We obtain an improved approximate solution (X^{k+1}, Y^{k+1}) by

$$X^{k+1} = \frac{\sum_{j=1}^n \frac{\beta_j w_j x_j}{d_j(X^k, Y^k)}}{\sum_{j=1}^n \frac{\beta_j w_j}{d_j(X^k, Y^k)}} \quad \& \quad Y^{k+1} = \frac{\sum_{j=1}^n \frac{\beta_j w_j y_j}{d_j(X^k, Y^k)}}{\sum_{j=1}^n \frac{\beta_j w_j}{d_j(X^k, Y^k)}}$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Weiszfeld Algorithm

Starting with an initial "guess" (X^0, Y^0) , we will generate a sequence of approximate solutions, (X^1, Y^1) , (X^2, Y^2) , (X^3, Y^3) , ..., which converge to the optimal facility location (X^*, Y^*) .

We terminate the method when two successive approximate solutions are "close enough", i.e.,

$$|X^{k+1} - X^k| + |Y^{k+1} - Y^k| < \epsilon \approx 0$$

Example

Customer	1	2	3	4
Location	(0,3)	(2,4)	(4,3)	(1,0)
Rqmt. (Ton/wk)	1	2	3	2

Cost/ton-mile is same for all customers

Where should a supply facility be located so that total shipping cost per week is minimized?

Starting Point

A good starting point is the centroid, i.e., the weighted average of the customer coordinates.

$$X^0 = \frac{\sum_{j=1}^4 \beta_j w_j x_j}{\sum_{j=1}^4 \beta_j w_j} \quad \& \quad Y^0 = \frac{\sum_{j=1}^4 \beta_j w_j y_j}{\sum_{j=1}^4 \beta_j w_j}$$

Customer	1	2	3	4
Location	(0,3)	(2,4)	(4,3)	(1,0)
Rqmt.	1	2	3	2

$$\beta_j = 1 \quad \forall j$$

$$X^0 = \frac{\sum_{j=1}^4 \beta_j w_j x_j}{\sum_{j=1}^4 \beta_j w_j} = \frac{1 \times 0 + 2 \times 2 + 3 \times 4 + 2 \times 1}{1 + 2 + 3 + 2} = 2.25$$

$$Y^0 = \frac{\sum_{j=1}^4 \beta_j w_j y_j}{\sum_{j=1}^4 \beta_j w_j} = \frac{1 \times 3 + 2 \times 4 + 3 \times 3 + 2 \times 1}{1 + 2 + 3 + 2} = 2.5$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Now compute distance from (X^0, Y^0) to each customer:

$$d_1 = \sqrt{\left(\frac{9}{4} - 0\right)^2 + \left(\frac{5}{2} - 3\right)^2} \approx 2.305$$

$$d_2 = \sqrt{\left(\frac{9}{4} - 2\right)^2 + \left(\frac{5}{2} - 4\right)^2} \approx 1.521$$

$$d_3 = \sqrt{\left(\frac{9}{4} - 4\right)^2 + \left(\frac{5}{2} - 3\right)^2} \approx 1.820$$

$$d_4 = \sqrt{\left(\frac{9}{4} - 1\right)^2 + \left(\frac{5}{2} - 0\right)^2} \approx 2.795$$

©Dennis Bricker, U. of Iowa, 1997

Shipping Cost:

©Dennis Bricker, U. of Iowa, 1997

Apply our successive substitution method to (we hope!) obtain a better approximate solution:

$$X^1 = \frac{\sum w_j X_j}{\sum \frac{w_j}{d_j}} = \frac{1 \times 0 + 2 \times 2 + 3 \times 4 + 2 \times 1}{\frac{1}{d_1} + \frac{2}{d_2} + \frac{3}{d_3} + \frac{2}{d_4}} \approx \frac{10.373}{4.113} = 2.522$$

$$Y^1 = \frac{\sum w_j Y_j}{\sum \frac{w_j}{d_j}} = \frac{1 \times 3 + 2 \times 4 + 3 \times 3 + 2 \times 0}{\frac{1}{d_1} + \frac{2}{d_2} + \frac{3}{d_3} + \frac{2}{d_4}} \approx \frac{11.506}{4.113} = 2.798$$

distance to customer j

$$d_j = \sqrt{[2.522 - X_j]^2 + [2.798 - Y_j]^2}$$

$$d_1 = 2.530$$

$$d_2 = 1.310$$

$$d_3 = 1.492$$

$$d_4 = 3.185$$

Shipping cost

$$1(2.53) + 2(1.31) + 3(1.492) + 2(3.185) = 15.996 < 16.397$$

reduction of 2.4%, 1997

©Dennis Bricker, U. of Iowa, 1997

Iteration # 1

Facility location at $X = 2.25$, $Y = 2.5$

Distances to demand pts:

i	1	2	3	4
D(i)	2.30489	1.52069	1.82003	2.79508
WT(i)xD(i)	2.30489	3.04138	5.46008	5.59017

Total cost is 16.3965

New location is at $X = 2.41659$, $Y = 2.79785$

Rectilinear distance moved is 0.464436

©Dennis Bricker, U. of Iowa, 1997

Iteration # 2

Facility location at $X = 2.41659$, $Y = 2.79785$

Distances to demand pts:

i	1	2	3	4
D(i)	2.42503	1.27229	1.59626	3.13603
WT(i)xD(i)	2.42503	2.54457	4.78879	6.27206

Total cost is 16.0305

New location is at $X = 2.51012$, $Y = 2.92419$

Rectilinear distance moved is 0.21987

Iteration # 3

Facility location at $X = 2.51012$, $Y = 2.92419$

Distances to demand pts:

i	1	2	3	4
D(i)	2.51126	1.19063	1.49181	3.2911
WT(i)xD(i)	2.51126	2.38126	4.47542	6.5822

Total cost is 15.9501

New location is at $X = 2.55738$, $Y = 2.96949$

Rectilinear distance moved is 0.0925647

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Iteration # 4

Facility location at X= 2.55738, Y= 2.96949

Distances to demand pts:

i	1	2	3	4
D(i)	2.55757	1.1716	1.44294	3.3531
WT(i)xD(i)	2.55757	2.34319	4.32881	6.7062

Total cost is 15.9328

New location is at X= 2.58231, Y= 2.98276

Rectilinear distance moved is 0.0381954

Iteration # 5

Facility location at X= 2.58231, Y= 2.98276

Distances to demand pts:

i	1	2	3	4
D(i)	2.58237	1.17212	1.4178	3.37647
WT(i)xD(i)	2.58237	2.34424	4.25339	6.75294

Total cost is 15.9329

New location is at X= 2.59067, Y= 2.98528

Rectilinear distance moved is 0.0168786

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Iteration # 6

Facility location at X= 2.59067, Y= 2.98528

Distances to demand pts:

i	1	2	3	4
D(i)	2.59671	1.17715	1.40341	3.38544
WT(i)xD(i)	2.59671	2.35429	4.21023	6.77089

Total cost is 15.9321

New location is at X= 2.60557, Y= 2.98478

Rectilinear distance moved is 0.0094046 < 0.01 (stopping criterion)

The Optimal Location for the Supply Facility

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Path Followed by the Successive Substitution Method

©Dennis Bricker, U. of Iowa, 1997