

Nine processes are available, and may be combined in a series....

⊕D.Bricker, U. of IA, 1999

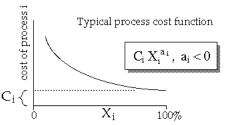
Available Processes i C_i \mathbf{a}_{i} Primary Clarifier (PC) 1 1.94 -1.47Trickling Filter (TF) 16.8 -1.66Activated Sludge (AS) following TF 3 91.5 -0.34 (AS) following PC 86 -0.38Aerated Lagoon (AL) following PC 5 45.9 -0.45(AL) following TF 6 -0.6327.4 Coagulation/sedimentation/filtration 152 -0.27(CSF) following AS Carbon Adsorption (CA) following AS 120 -0.33CSF following AL 179 -0.37

⊕D.Bricker, U. of IA, 1999

The design problem is one of choosing the combination of processes and appropriate process levels to

- · minimize the sum of total annual costs
- attain a required effluent quality K
 = maximum 5-day BOD as % of raw waste BOD

A paper manufacturer must build a wastewater treatment plant for the removal of pulp and other byproducts.


The quality of the effluent is measured in units of

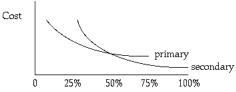
% 5-day BOD (biological oxygen demand) removed

1 lb. 5-day BOD = quantity of organic waste which will consume 1 pound of oxygen during 5 days of decomposition.

⊚D.Bricker, U. of IA, 1999

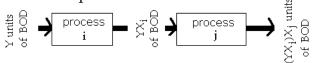
Each process i may be designed to remove any specified fraction of BOD from its input.

X_i = % of BOD input to process *i* which remains in the output of that process


⊕D.Bricker, U. of IA, 1999

Possible designs include

design #	Primary	Secondary	Tertiary
1	PC	TF + AS	CA
2	PC	TF + AL	CS
3	PC	AS	CA
4	PC	AL	CS
5	PC	TF + AS	CS
6	PC	AS	CS
7	PC	AS	none
8	PC	TF+AS	none
9	PC	AL	none
10	PC	TF + AL	none


@D.Bricker, U. of IA, 1999

It would be very expensive to use a single process to remove the entire required amount of BOD

The primary process will remove a relatively large amount of BOD very cheaply... then a secondary process may bring effluent to required levels.

Since the individual processes act in series, their effect is multiplicative:

 $X_i X_i = \%$ of original BOD remaining

⊕D.Bricker, U. of IA, 1999

Example.

Design #1

Uses combination of 4 processes in series:

#1: Primary Clarifier

#2: Trickling Filter

#3: Activated Sludge

#8: Carbon Absorption

Suppose that 97.1% of the BOD must be removed, i.e., K = 2.9% is maximum BOD remaining

$$\frac{1}{K} = \frac{1}{0.029} \approx 34.5$$

@D.Bricker, U. of IA, 1999

$$\begin{aligned} &-1.47\delta_{1}+\delta_{5}=0 \Rightarrow \delta_{1}=\frac{\delta_{5}}{1.47}\\ &-1.66\delta_{2}+\delta_{5}=0 \Rightarrow \delta_{2}=\frac{\delta_{5}}{1.66}\\ &-0.3\delta_{3}+\delta_{5}=0 \Rightarrow \delta_{3}=\frac{\delta_{5}}{0.3}\\ &-0.33\delta_{4}+\delta_{5}=0 \Rightarrow \delta_{4}=\frac{\delta_{5}}{0.33}\\ &\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}=1 \Rightarrow \frac{\delta_{5}}{1.47}+\frac{\delta_{5}}{1.66}+\frac{\delta_{5}}{0.3}+\frac{\delta_{5}}{0.33}=1 \end{aligned}$$

OD.Bricker, U. of IA, 1999

Optimal cost is

$$\Big(\frac{19.4}{\delta_1}\Big)^{\delta_1}\!\Big(\frac{16.8}{\delta_2}\Big)^{\delta_2}\!\Big(\frac{91\backslash 5}{\delta_3}\Big)^{\delta_3}\!\Big(\frac{120}{\delta_4}\Big)^{\delta_4}\!\Big(\frac{34.5}{\delta_5}\Big)^{\delta_5}\!\lambda_1^{\lambda_1} \ = \ 387.439$$

optimal dual value = optimal primal cost!

For a design involving processes i=1, 2, Nthe minimum cost is found by

T = #terms = N+1#degrees of difficulty = T - (N+1) = 0

⊕D.Bricker, U. of IA, 1999

$$\begin{split} & \underbrace{\text{Min } 19.4X_1^{-1.47} + 16.8X_2^{-1.66} + 91.5X_3^{-0.3} + 120X_8^{-0.33} \\ & \text{subject to} } & 34.5 \ X_1 \ X_2 \ X_3X_8 \le 1 \\ & X_1 > 0, X_2 > 0, X_3 > 0, X_3 > 0 \end{split} \\ & \underbrace{\text{Max} \left(\frac{19.4}{\delta_1} \right)^{\delta_1} \! \left(\frac{16.8}{\delta_2} \right)^{\delta_2} \! \left(\frac{91.5}{\delta_3} \right)^{\delta_3} \! \left(\frac{120}{\delta_4} \right)^{\delta_4} \! \left(\frac{34.5}{\delta_5} \right)^{\delta_5} \! \lambda_1^{\lambda_1} }_{ \delta_1 + \delta_2 + \delta_3 + \delta_4 = 1} \\ & \underbrace{\delta_5 = \lambda_1}_{ -1.47\delta_1 + \delta_5 = 0} \\ & \underbrace{-1.47\delta_1 + \delta_5 = 0}_{ -0.33\delta_4 + \delta_5 = 0} \\ & \underbrace{-0.33\delta_4 + \delta_5 = 0}_{ \delta_j \ge 0, \ j = 1, 2, 3, 4; \ \lambda_1 \ge 0}_{ \text{orthogonality}} \end{split}$$

⊚D.Bricker, U. of IA, 1999

$$\begin{split} \delta_5 &= \frac{1}{\frac{1}{1.47} + \frac{1}{1.66} + \frac{1}{0.3} + \frac{1}{0.33}} = 0.13078 \\ \delta_1 &= \frac{\delta_5}{1.47} = 0.131 \quad \text{i.e., cost of process $\#1$ should be} \\ \delta_2 &= \frac{\delta_5}{1.66} = 0.089 \quad \text{cost of process $\#2$ should be} \\ \delta_3 &= \frac{\delta_5}{0.3} = 0.436 \quad \text{etc.} \\ \delta_4 &= \frac{\delta_5}{0.33} = 0.394 \end{split}$$

independent of K!

OD.Bricker, U. of IA, 1999

Solving for the primal variables:

$$C_i X_i^{a_i} = \delta_i V^* \Rightarrow X_i = \left(\frac{\delta_i V^*}{C_i}\right)^{1/a_i}$$

E.g.,
$$19.4X_1^{-1.47} = 0.0889673 \times 387.439 \Rightarrow X_1 = 0.676367$$

$$\Rightarrow \begin{cases} X_1 = 0.676367 & \text{i.e., process #1 should} \\ X_2 = 0.69787 & \text{remove all but } 67.6367\% \\ X_3 = 0.129609 & \text{of the BOD, etc.} \\ X_8 = 0.473792 \end{cases}$$

In general, for any K the optimal cost for design 1 is

$$\begin{split} V^*(K) &= \ \Big(\frac{19.4}{\delta_1}\Big)^{\delta_1}\!\Big(\frac{16.8}{\delta_2}\Big)^{\delta_2}\!\Big(\frac{91\backslash 5}{\delta_3}\Big)^{\delta_3}\!\Big(\frac{120}{\delta_4}\Big)^{\delta_4}\!\Big(\frac{1}{K\delta_5}\Big)^{\delta_5}\,\lambda_1^{\lambda_1} \\ &= 243.829\,K^{-0.130782} \end{split}$$

Design 1:
Processes 1,2,3, &8 $V^*(K) = 243.829 \text{ K} - 0.130782$

⊕D.Bricker, U. of IA, 1999

By enumerating all of the possible combinations of processes, the least-cost design may be determined. *(choice depends upon K!)*

⊕D.Bricker, U. of IA, 1999

In the case of design 1, the optimal primal variables are:

$$X_i = \left(\frac{243.829 \ \delta_i \, K}{C_i} - 0.130782\right)^{1/\!\!/_{\!\! a_i}}$$

⊕D.Bricker, U. of IA, 1999

For each design t (t=1, 2, 3, ...10) the optimal cost may easily be computed:

$$V_t^*(K) = C_t K^{-A_t}$$

where C_t and A_t are given on the following screen.

⊕D.Bricker, U. of IA, 1999

Design	Process	es C	A	V(0.029)
1	1 2 3 8	243.829	-0.130782	387.414
2	1267	203.452	-0.152122	348.63
3	148	223.887	-0.157675	391.264
4	159	211.162	-0.178406	397.129
5	1237	274.322	-0.120196	419.831
6	147	255.172	-0.14254	422.672
7	1 4	105.245	-0.301946	306.53
8	1 2 3	127.688	-0.216637	274.948
9	1 5	64.659	-0.344531	218.969
10	1 2 6	61.713	-0.348434	211.9

@D.Bricker, U. of IA, 1999

 $V_{t}^{*}(K)$

					K				
t	process	1%	1.5%	2%	2.5%	3%	3.5%	4%	5%
1	1238	445.30	422.30	406.70	395.01	385.70	378.00	371.46	360.77
2	1267	409.93	385.41	368.90	356.59	346.84	338.80	331.99	320.91
3	148	462.78	434.12	414.87	400.53	389.18	379.83	371.92	359.06
4	159	480.20	446.69	424.35	407.79	394.73	384.03	374.99	360.35
5	1237	477.15	454.45	439.01	427.39	418.12	410.45	403.91	393.22
6	147	491.94	464.32	445.66	431.71	420.63	411.49	403.73	391.09
7	14	422.76	374.04	342.92	320.58	303.41	289.61	278.17	260.04
8	123	346.28	317.16	298.00	283.93	272.94	263.97	256.45	244.34
9	15	316.00	274.81	248.87	230.46	216.43	205.23	196.00	181.50
10	126	307.08	266.62	241.19	223.15	209.41	198.46	189.44	175.27

⊕D.Bricker, U. of IA, 1999