

©Dennis Bricker, U. of Iowa, 1997

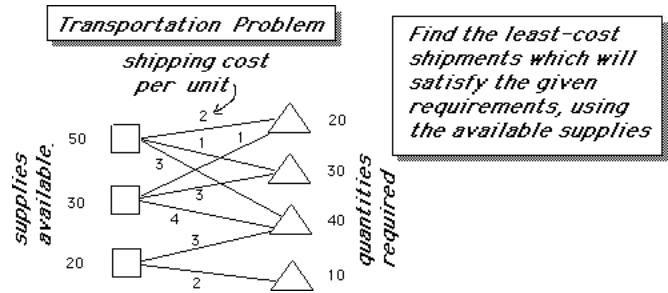
TRANSPORTATION PROBLEM

This Hypercard stack copyright 1997 by
Dennis L. Bricker
Dept. of Industrial Engineering
University of Iowa
e-mail: dennis-bricker@uiowa.edu

©Dennis Bricker, U. of Iowa, 1997

Directory

- ⇒ LP formulation of the problem
- ⇒ The Transportation Tableau
- ⇒ Simplex Algorithm
- ⇒ Degeneracy
- ⇒ Production planning application



©Dennis Bricker, U. of Iowa, 1997

LP Formulation of the Transportation Problem

Let i index the sources, and j the destinations
 $m = \#$ of sources, $n = \#$ destinations

Given:

S_i = quantity of goods available at source i
 D_j = quantity of goods required at destination j
 C_{ij} = unit cost of shipping goods from source i to destination j

Find:

X_{ij} = quantity of goods to be shipped from source i to destination j

©Dennis Bricker, U. of Iowa, 1997

$$\begin{aligned} \text{Minimize} \quad & \sum_{i=1}^m \sum_{j=1}^n C_{ij} X_{ij} \\ \text{subject to} \quad & \sum_{j=1}^n X_{ij} \leq S_i \quad \text{for } i=1, \dots, m \quad \leftarrow \begin{array}{l} \text{no more is} \\ \text{shipped from} \\ \text{source } i \text{ than} \\ \text{is available} \end{array} \\ & \sum_{i=1}^m X_{ij} \geq D_j \quad \text{for } j=1, \dots, n \quad \leftarrow \begin{array}{l} \text{requirement} \\ \text{at dstn. } j \text{ is} \\ \text{met} \end{array} \\ & X_{ij} \geq 0, \quad \text{all } i \text{ & } j \end{aligned}$$

This is an LP with: $m \times n$ variables
 $m+n$ constraints
 $(\text{not including nonnegativity})$

©Dennis Bricker, U. of Iowa, 1997

The standard, "balanced", transportation problem has $\text{total supply} = \text{total demand}$

$$\sum_{i=1}^m S_i = \sum_{j=1}^n D_j$$

so that all constraints will be "tight" at a feasible solution, i.e.,

$$\sum_{j=1}^n X_{ij} = S_i \quad \text{for } i=1, \dots, m$$

$$\sum_{i=1}^m X_{ij} = D_j \quad \text{for } j=1, \dots, n$$

©Dennis Bricker, U. of Iowa, 1997

Conversion to Standard Form

When total supply exceeds total demand: $\sum_{i=1}^m S_i > \sum_{j=1}^n D_j$

Create a "dummy" destination $(n+1)$ whose "demand" is equal to the surplus supply:

$$D_{n+1} = \sum_{i=1}^m S_i - \sum_{j=1}^n D_j$$

and let the cost of "shipping" to this destination be $C_{i,n+1} = 0$

$(X_{ij}$ will equal the unshipped supply at source i)

©Dennis Bricker, U. of Iowa, 1997

Conversion to Standard Form

When total demand exceeds total supply $\sum_{i=1}^m S_i < \sum_{j=1}^n D_j$

In this case, the problem is infeasible, i.e., not all demand can be satisfied.

One can create a "dummy" source $(m+1)$ whose available supply is the shortfall, i.e.,

$$S_{m+1} = \sum_{j=1}^n D_j - \sum_{i=1}^m S_i$$

and define the cost of "shipping" to be

$$C_{m+1,j} = \text{unit shortage cost at destination } j$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

The LP tableau*An example with 3 sources, 6 destinations*

X ₁₁ X ₁₂ X ₁₃ X ₁₄ X ₁₅ X ₁₆ X ₂₁ X ₂₂ X ₂₃ X ₂₄ X ₂₅ X ₂₆ X ₃₁ X ₃₂ X ₃₃ X ₃₄ X ₃₅ X ₃₆													MIN
50	50	0	50	0	50	0	50	0	50	0	50	0	MIN
1	1	1	1	1	1	1	1	1	1	1	1	1	= 12
1	1	1	1	1	1	1	1	1	1	1	1	1	= 7
1	1	1	1	1	1	1	1	1	1	1	1	1	= 15

Even though the transportation problem is an LP problem and is solved by the Simplex Method for LP, we do not use the usual LP tableau.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Destns		The TP tableau						EXCESS CAP. supply	
Sources		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.			
HOME CITY		.95	1.05	.80	.15	1.00	0	12	
BRANCH #1		.35	1.80	1.40	.80	.30	0	7	
BRANCH #2		.90	1.80	1.60	.70	.85	0	15	
demand:		5	4	4	11	8	2	sum= 34	

Shipments will be written here

Unit shipping cost

To perform the Simplex Method, we need to:

- ⇒ obtain an initial basic feasible solution
- ⇒ "price" the nonbasic variables & select an entering variable
- ⇒ select the basic variable which will leave the basis

How are these steps performed using the transportation tableau?

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

The Simple method requires a BASIC FEASIBLE SOLUTION (bfs) to begin. (# of basic variables is $m+n-1$)

3 commonly used methods:

- ⇒ Northwest Corner Method
- ⇒ Least-Cost Method
- ⇒ Vogel's Approximation Method

©Dennis Bricker, U. of Iowa, 1997

Obtaining an initial b.f.s.

"Northwest Corner Rule"

Step 1: Assign to the upper left corner of the TP tableau the minimum of the supply in that row & the demand in that column:

$$X_{ij} = \min(S_i, D_j)$$

Step 2: Reduce the supply & demand for that row & column by X_{ij}

Step 3: Delete any row &/or column with zero supply or demand, and return to step 1.

Northwest Corner Rule

EXCESS CAP. supply												
	ATLANTA	L.A.	DALLAS	CHGO.	N.Y.							
HOME CITY	5	.95	1.05	.80	.15	1.00	0	12	7			
BRANCH #1		.35	1.80	1.40	.80	.30	0		7			
BRANCH #2		.90	1.80	1.60	.70	.85	0	15				
demand:	5	4	4	11	8	2	sum= 34					
	0	0	0	0	0	0						

Starting in the upper-left ("northwest") corner, i.e., the shipping route from HOME CITY to ATLANTA, we assign $X = \min\{12, 5\} = 5$ to the route, and reduce the supply at HOME CITY, and the demand at ATLANTA each by 5

Northwest Corner Rule

EXCESS CAP. supply												
	ATLANTA	L.A.	DALLAS	CHGO.	N.Y.							
HOME CITY	5	4	.95	1.05	.80	.15	1.00	0	12	7		
BRANCH #1		.35	1.80	1.40	.80	.30	0		7			
BRANCH #2		.90	1.80	1.60	.70	.85	0	15				
demand:	5	4	4	11	8	2	sum= 34					
	0	0	0	0	0	0						

Assign $X_{12} = \min\{7, 4\} = 4$ to the shipping route from HOME CITY to L.A.
Reduce supply for HOME CITY & demand for L.A. by 4

©Dennis Bricker, U. of Iowa, 1997

Least-Cost Rule

		EXCESS CAP. supply						
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.		
HOME CITY		.95	1.05	.80	1.15	1.00	0	12 - 1
BRANCH #1		.35	1.80	1.40	.80	.30	0	7 - 0
BRANCH #2		.90	1.80	1.60	.70	.85	0	15 - 14
demand:		5	4	4	11	8	2	sum= 34
		0	0	0	0	0		

Assign minimum {15, 1} = 1 to the shipping route from BRANCH #2 to N.Y., and reduce supply & demand

©Dennis Bricker, U. of Iowa, 1997

Least-Cost Rule

		EXCESS CAP. supply							
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.			
HOME CITY		.95	1.05	1	.80	1.15	1.00	0	12 - 1 - 0
BRANCH #1		.35	1.80	1.40	.80	.30	0	7 - 0	
BRANCH #2		.90	1.80	1.60	.70	.85	0	15 - 14 - 9	
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0			

Assign minimum {1, 4} = 1 to the shipping route from HOME CITY to DALLAS, and reduce the supply & demand.

©Dennis Bricker, U. of Iowa, 1997

Least-Cost Rule

		EXCESS CAP. supply							
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.			
HOME CITY		.95	1.05	1	.80	1.15	1.00	0	12 - 1 - 0
BRANCH #1		.35	1.80	1.40	.80	.30	0	7 - 0	
BRANCH #2		5	.90	1.80	1.60	.70	.85	0	15 - 14 - 9
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0			

Next, we assign minimum{14, 5} = 5 to the shipping route from BRANCH #2 to ATLANTA, and reduce supply & demand.

©Dennis Bricker, U. of Iowa, 1997

Least-Cost Rule

		EXCESS CAP. supply							
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.			
HOME CITY		.95	1.05	1	.80	1.15	1.00	0	12 - 1 - 0
BRANCH #1		.35	1.80	1.40	.80	.30	0	7 - 0	
BRANCH #2		5	.90	1.80	1.60	.70	.85	0	15 - 14 - 9
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0			

We continue, assigning the amounts required by each of L.A., DALLAS, and "EXCESS CAP." to the shipping route from BRANCH #2

©Dennis Bricker, U. of Iowa, 1997

Least-Cost Rule

		EXCESS CAP. supply							
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.			
HOME CITY		.95	1.05	1	.80	1.15	1.00	0	12
BRANCH #1		.35	1.80	1.40	.80	.30	0	7	
BRANCH #2		5	.90	1.80	1.60	.70	.85	0	15
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0			

These 8 shipments are feasible, and a basic solution, with cost \$21.90

©Dennis Bricker, U. of Iowa, 1997

Vogel's Approximation Method (VAM)

Find the maximum penalty (which may be on either a row or column), and the least-cost cell within that row or column.

As in NW-corner Method, assign as great a shipment as possible to this cell, reduce the supply & demand for the row & column, and repeat (recomputing the penalties)

Obtaining an initial b.f.s.**Vogel's Approximation Method (VAM)**

For each row, compute a "penalty" equal to the difference between the two smallest costs in that row.

(If we do NOT select the least-cost cell in this row for assigning a shipment, we will pay at least this much more per unit!)

Likewise, compute a "penalty" for each column, equal to the difference between the two smallest costs in that column.

©Dennis Bricker, U. of Iowa, 1997

VAM

		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP. supply		
		0.55	0.75	0.60	0.55	0.55	0		
HOME CITY		0.15	.95	1.05	.80	.15	1.00	0	12
BRANCH #1		0.30	.35	1.80	1.40	.80	.30	0	7
BRANCH #2		0.70	.90	1.80	1.60	.70	.85	0	15
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0			

The penalty for DALLAS is
1.40 - 0.80 = 0.60

i.e., if DALLAS does not receive its shipment from HOME CITY, the cost will be at least 0.60/unit greater

©Dennis Bricker, U. of Iowa, 1997

VAM		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	supply
HOME CITY	BRANCH #1	0.15	0.30	0.55	0.55	0.55	0	
		.95	4	1.05	.80	.15	1.00	0
		.35	1.80	1.40	.80	.30	0	7
		.90	1.80	1.60	.70	.85	0	15
demand:		5	4	4	11	8	2	sum= 34
		0	0	0	0	0	0	

The maximum penalty is that for L.A.

So we select the least-cost cell for L.A. (HOME CITY - L.A.)

©Dennis Bricker, U. of Iowa, 1997

VAM		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	supply
HOME CITY	BRANCH #1	0.65	0.05	0.55	0.55	0.55	0	
		.95	4	1.05	.80	.15	1.00	0
		.35	1.80	1.40	.80	.30	0	7
		.90	1.80	1.60	.70	.85	2	0
demand:		5	4	4	11	8	2	sum= 34
		0	0	0	0	0	0	

After updating the penalties, we select the HOME CITY row, and the least-cost cell in that row (HOME CITY - CHGO.)

©Dennis Bricker, U. of Iowa, 1997

VAM		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	supply	
HOME CITY	BRANCH #1	0.20	0.10	0.55	0.55	0.55	0		
		.95	4	1.05	.80	8	.15	1.00	0
		5	.35	1.80	1.40	.80	.30	2	0
		.90	1.80	1.60	.70	.85	2	0	
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0	0		

The maximum penalty is now that of BRANCH #1, and we select the least-cost cell in that row (BRANCH#1 - N.Y.)

©Dennis Bricker, U. of Iowa, 1997

VAM		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	supply	
HOME CITY	BRANCH #1	0.20	0.10	0.55	0.55	0.55	0		
		.95	4	1.05	.80	8	.15	1.00	0
		5	.35	1.80	1.40	.80	.30	2	0
		.90	1.80	1.60	.70	.85	2	0	
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0	0		

The total shipping cost for this solution is \$21.35

©Dennis Bricker, U. of Iowa, 1997

VAM		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	supply
HOME CITY	BRANCH #1	0.15	0.30	0.55	0.55	0.55	0	
		.95	4	1.05	.80	.15	1.00	0
		.35	1.80	1.40	.80	.30	0	7
		.90	1.80	1.60	.70	.85	2	0
demand:		5	4	4	11	8	2	sum= 34
		0	0	0	0	0	0	

The maximum penalty now is that of BRANCH #2.

We select the least-cost cell in that row (BRANCH#2 - EXCESS CAP.)

©Dennis Bricker, U. of Iowa, 1997

VAM		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	supply	
HOME CITY	BRANCH #1	0.55	0.20	0.10	0.55	0.55	0		
		.95	4	1.05	.80	8	.15	1.00	0
		5	.35	1.80	1.40	.80	.30	0	7
		.90	1.80	1.60	.70	.85	2	0	
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0	0		

Again we update the penalties, and choose the largest penalty, that of ATLANTA, and the least-cost cell in that column (BRANCH#1 - ATLANTA)

©Dennis Bricker, U. of Iowa, 1997

VAM		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	supply	
HOME CITY	BRANCH #1	0.20	0.10	0.55	0.55	0.55	0		
		.95	4	1.05	.80	8	.15	1.00	0
		5	.35	1.80	1.40	.80	.30	2	0
		.90	1.80	1.60	.70	.85	6	0	
demand:		5	4	4	11	8	2	sum= 34	
		0	0	0	0	0	0		

Since only one source remains, we can complete the solution!

©Dennis Bricker, U. of Iowa, 1997

Computing
Reduced
Costs

To begin a simplex iteration, we must select a variable (shipment) to enter the solution.

This variable should have a **negative reduced cost**.

reduced cost of a route =
$$\begin{cases} \text{change in cost function} \\ \text{if one unit is shipped} \\ \text{along that route} \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

Sources		The TP tableau					EXCESS CAP. supply
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	
HOME CITY		.95	1.05	.80	.15	1.00	0
BRANCH #1		35	1.80	1.40	.80	.30	0
BRANCH #2		5	.90	1.80	1.60	.20	1.85
demand:		5	4	4	11	8	2
						sum= 34	

Suppose that we ship one unit from HOME CITY to ATLANTA.

Change in total cost = $+0.95 - 0.80 + 1.60 - 0.90 = +0.85$
(Reduced Cost)

©Dennis Bricker, U. of Iowa, 1997

Sources		The TP tableau					EXCESS CAP. supply
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	
HOME CITY		.95	1.05	.80	.15	1.00	0
BRANCH #1		35	1.80	1.40	.80	.30	0
BRANCH #2		5	.90	1.80	1.60	.20	1.85
demand:		5	4	4	11	8	2
						sum= 34	

In this tableau, only the (BRANCH#2 - CHGO.) route has a negative reduced cost ($= +0.70 - 0.15 + 0.80 - 1.60 = -0.25$)
That is, every unit we ship along this route reduces our total cost by \$0.25.

©Dennis Bricker, U. of Iowa, 1997

Then the reduced cost, as in the revised simplex method, is computed by:

$$\begin{aligned} \text{reduced cost} & \rightarrow \bar{C}_{ij} = C_{ij} - [u_1, u_2, \dots, u_m, v_1, \dots, v_n] \\ & \uparrow \text{cost of } x_{ij} \quad \uparrow \text{Column of tableau for } x_{ij} \\ & = C_{ij} - (u_i + v_j) \end{aligned}$$

which is much simpler than identifying the cycles!

©Dennis Bricker, U. of Iowa, 1997

The Primal LP									
$\begin{matrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{41} & x_{42} & x_{43} & x_{44} & x_{45} \end{matrix}$									
$\begin{matrix} 56 \\ 50 \\ 56 \\ 50 \\ 50 \end{matrix}$	$\begin{matrix} 08 \\ 05 \\ 08 \\ 05 \\ 00 \end{matrix}$	$\begin{matrix} 51 \\ 00 \\ 08 \\ 05 \\ 00 \end{matrix}$	$\begin{matrix} 08 \\ 05 \\ 08 \\ 05 \\ 00 \end{matrix}$	$\begin{matrix} 06 \\ 05 \\ 08 \\ 05 \\ 00 \end{matrix}$	$\begin{matrix} 06 \\ 05 \\ 08 \\ 05 \\ 00 \end{matrix}$	$\begin{matrix} 06 \\ 05 \\ 08 \\ 05 \\ 00 \end{matrix}$	$\begin{matrix} 06 \\ 05 \\ 08 \\ 05 \\ 00 \end{matrix}$	$\begin{matrix} 06 \\ 05 \\ 08 \\ 05 \\ 00 \end{matrix}$	$\begin{matrix} 06 \\ 05 \\ 08 \\ 05 \\ 00 \end{matrix}$
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

The Dual LP									
Max $12u_1 + 7u_2 + \dots + 2v_6$									
subject to									
$u_1 + v_1 \leq 0.95$									
$u_1 + v_2 \leq 1.05$									
$u_1 + v_3 \leq 0.80$									
$u_1 + v_4 \leq 0.15$									
$u_1 + v_5 \leq 1.00$									
$u_2 + v_1 \leq 1.2$									
$u_2 + v_2 \leq 7$									
$u_2 + v_3 \leq 15$									
$u_3 + v_1 \leq 5$									
$u_3 + v_2 \leq 4$									
$u_3 + v_3 \leq 4$									
$u_4 + v_1 \leq 11$									
$u_4 + v_2 \leq 8$									
$u_4 + v_3 \leq 8$									
$u_5 + v_1 \leq 2$									
$(u_i \text{ & } v_j \text{ unrestricted in sign})$									

©Dennis Bricker, U. of Iowa, 1997

Sources		The TP tableau					EXCESS CAP. supply
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	
HOME CITY		.95	1.05	.80	.15	1.00	0
BRANCH #1		35	1.80	1.40	.80	.30	0
BRANCH #2		5	.90	1.80	1.60	.20	1.85
demand:		5	4	4	11	8	2
						sum= 34	

If we ship ONE unit from BRANCH#1 to CHGO., the required adjustments are somewhat more complex. The reduced cost is $0.80 - 0.30 + 0.85 - 1.60 + 0.80 - 0.15 = +0.40$

©Dennis Bricker, U. of Iowa, 1997

An easier method for computing reduced costs:

Let u_i = dual variable (simplex multiplier) for the supply constraint: $\sum_{j=1}^n X_{ij} = S_i$

v_j = dual variable (simplex multiplier) for the demand constraint: $\sum_{i=1}^m X_{ij} = D_j$

Then the reduced cost, as in the revised simplex method, is computed by: $\bar{C}_{ij} = C_{ij} - (u_i + v_j)$

©Dennis Bricker, U. of Iowa, 1997

Computing the simplex multipliers

Recall that the simplex multipliers are the values of the dual variables.

We will next write the dual constraints, and use "Complementary Slackness" to compute the dual variables.

The dual constraints are $u_i + v_j \leq C_{ij}$ for all i & j
Complementary Slackness implies that $X_{ij} > 0 \Rightarrow u_i + v_j = C_{ij}$
This provides us with $(m+n-1)$ equations
(\uparrow # of basic variables)
from which we can compute the $(m+n)$ unknowns.
(Because the system of equations is "overdetermined", we can assign an arbitrary value, e.g., zero, to one of the dual variables.)

©Dennis Bricker, U. of Iowa, 1997

		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	
		0	.95	1.05	1 .80	.15	1.00	0
HOME CITY	0	.95	1.05	1 .80	.15	1.00	0	
	BRANCH #1	.35	1.80	1.40	.80	.30	0	
BRANCH #2	5	.90	4	1.80	1.60	.70	1 .85 2 0	

Let's arbitrarily set $u_1 = 0$

Then complementary slackness implies that

$$u_1 + v_3 = 0.80 \\ \Rightarrow v_3 = 0.80$$

$$\text{and} \\ u_1 + v_4 = 0.15 \\ \Rightarrow v_4 = 0.15$$

©Dennis Bricker, U. of Iowa, 1997

		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	
		0	.95	1.05	1 .80	.15	1.00	0
HOME CITY	0	.95	1.05	1 .80	.15	1.00	0	
	BRANCH #1	.35	1.80	1.40	.80	.30	0	
BRANCH #2	5	.90	4	1.80	1.60	.70	1 .85 2 0	

Now we can use complementary slackness to obtain v_1, v_2, v_5 , and v_6

$$u_3 + v_1 = 0.90 \\ \Rightarrow v_1 = 0.10$$

$$u_3 + v_2 = 1.80 \\ \Rightarrow v_2 = 1.00$$

$$u_3 + v_5 = 0.85 \\ \Rightarrow v_5 = 0.05$$

$$u_3 + v_6 = 0 \\ \Rightarrow v_6 = -0.8$$

©Dennis Bricker, U. of Iowa, 1997

		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	
		0	.95	1.05	1 .80	.15	1.00	0
HOME CITY	0	.95	1.05	1 .80	.15	1.00	0	
	BRANCH #1	.35	1.80	1.40	.80	.30	0	
BRANCH #2	.8	5	.90	4	1.80	1.60	.70 1 .85 2 0	

Now let's use the simplex multipliers to compute the reduced costs, using the formula: $\bar{C}_{ij} = C_{ij} - (u_i + v_j)$

$$\bar{C}_{11} = 0.95 - (0 + 0.1) \\ = 0.85$$

These are in agreement with the earlier computations!

©Dennis Bricker, U. of Iowa, 1997

		DALLAS CHGO.			
HOME CITY	0	1 + 0	11 - 0		
BRANCH #2		3 - 0	+ 0		

Since each unit shipped along the BRANCH#2-CHGO. route reduces our cost by \$0.25, so we wish to ship as much as possible.

What is the upper limit on θ ?

As soon as $\theta = 3$, the shipment from BRANCH#2-DALLAS becomes zero, preventing any further increase in θ

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	
		0	.95	1.05	1 .80	.15	1.00	0
HOME CITY	0	.95	1.05	1 .80	.15	1.00	0	
	BRANCH #1	.35	1.80	1.40	.80	.30	0	
BRANCH #2	5	.90	4	1.80	1.60	.70	1 .85 2 0	

Now we can use Complementary Slackness to obtain

$$u_3 + v_3 = 1.60 \\ u_3 + .8 = 1.60 \\ \Rightarrow u_3 = .8$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	
		0	.95	1.05	1 .80	.15	1.00	0
HOME CITY	0	.95	1.05	1 .80	.15	1.00	0	
	BRANCH #1	.35	1.80	1.40	.80	.30	0	
BRANCH #2	.8	5	.90	4	1.80	1.60	.70 1 .85 2 0	

Finally, we can use v_4 to compute u_2 :

$$u_2 + v_4 = 0.30 \\ \Rightarrow u_2 = 0.25$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Selecting variable to leave the basis

Once we have selected the variable to enter the basis, we must select the variable to leave the basis.

(In the simplex method, this is usually decided by the "MINIMUM RATIO TEST")

©Dennis Bricker, U. of Iowa, 1997

		The TP tableau					
Sources	Dstns	ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.
HOME CITY		.95	1.05	4 .80	.15	1.00	0
BRANCH #1		.35	1.80	1.40	.80	.30	0
BRANCH #2		5 .90	4 1.80	1.60	.70	1 .85	2 0
demand:		5	4	4	11	8	2
							sum= 34

The new solution has a total shipping cost of \$21.15, a savings of \$0.75 (= 3 × 0.25)

©Dennis Bricker, U. of Iowa, 1997

		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	
		u_i	.35	1.35	.8	.15	.3	-.55
HOME CITY		0	.95	1.05	4	.80	8	.15
BRANCH #1		0	.35	1.80	1.40	.80	.30	0
BRANCH #2		.55	5	.90	4	1.60	3	.70
						1	.85	2
						0		

$$X_{ij} > 0 \\ \Rightarrow u_i + v_j = C_{ij}$$

To proceed with the next iteration, we first compute the dual variables.

For example, start with $u_1 = 0$:

$$u_1 = 0 \Rightarrow \begin{cases} v_3 = 0.8 \\ v_4 = 0.15 \end{cases} \Rightarrow u_3 = 0.55 \Rightarrow \begin{cases} v_1 = 0.35 \\ v_2 = 1.25 \\ v_5 = 0.3 \\ v_6 = -0.55 \end{cases} \Rightarrow u_2 = 0$$

©Dennis Bricker, U. of Iowa, 1997

		The TP tableau						
		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP. supply	
Sources		HOME CITY	.95	1.05	4	.80	8	.0
BRANCH #1		0	.35	1.80	1.40	.80	.30	0
BRANCH #2		.55	5	.90	4	1.60	3	.70
						1	.85	2
						0		
demand:		5	4	4	11	8	2	sum= 34

We identify the cycle formed by adding the new shipment, and determine the adjustments required. The maximum allowed increase in θ is $\min\{8, 4\} = 4$

©Dennis Bricker, U. of Iowa, 1997

		The TP tableau						
		u_i	.9	1.60	1.35	0.7	0.85	0 supply
u_j	-0.55		.95	4	4	4	.15	1.00 0
u_j	-0.55		.35	1.80	1.40	.80	.30	0
u_j	0		5	.90	1.80	1.60	.70	1 .85 2 0
demand:		5	4	4	11	8	2	sum= 34

By first assigning $u_3 = 0$, the dual variables shown above are computed.

©Dennis Bricker, U. of Iowa, 1997

		u_i	.9	1.60	1.35	0.7	0.85	0
u_j	-0.55		.95	4	4	4	.15	1.00 0
u_j	-0.55		.35	1.80	1.40	.80	.30	0
u_j	0		5	.90	1.80	1.60	.70	1 .85 2 0

Because one nonbasic variable has a zero reduced cost, there is an alternate optimal solution!

i	1	1	1	2	2	2	2	3	3
j	1	5	6	1	2	3	4	6	2
\bar{C}_{ij}	+0.6	+0.7	+0.55	0	+0.75	+0.6	+0.65	+0.55	+0.2 +0.25

©Dennis Bricker, U. of Iowa, 1997

		ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP.	
		u_i	.35	1.35	.8	.15	.3	-.55
HOME CITY	0	.95	1.05	4	.80	.15	1.00	0
BRANCH #1	0	.35	1.80	1.40	.80	.30	.30	0
BRANCH #2	.55	5	.90	4	1.60	.70	1 .85 2 0	

The reduced costs may now be computed:

$$\bar{C}_{11} = 0.95 - (0 + 0.35) = +0.60$$

Since $\bar{C}_{12} < 0$, we may enter X_{12} into the solution.

©Dennis Bricker, U. of Iowa, 1997

		The TP tableau						
		Sources	ATLANTA	L.A.	DALLAS	CHGO.	N.Y.	EXCESS CAP. supply
Destns		HOME CITY	.95	1.05	4	.80	.15	1.00 0
		BRANCH #1	.35	1.80	1.40	.80	.30	.30 0
		BRANCH #2	5	.90	4	1.60	.70	1 .85 2 0
demand:		5	4	4	11	8	2	sum= 34

The new basic solution, with the cost reduced by $X_{12} \times \bar{C}_{12} = 4 \times 0.20 = 0.80$

©Dennis Bricker, U. of Iowa, 1997

		u_i	.9	1.60	1.35	0.7	0.85	0
u_j	-0.55		.95	4	4	4	.15	1.00 0
u_j	-0.55		.35	1.80	1.40	.80	.30	0
u_j	0		5	.90	1.80	1.60	.70	1 .85 2 0

The reduced costs of the nonbasic variables are:

i	1	1	1	2	2	2	2	3	3
j	1	5	6	1	2	3	4	6	2
\bar{C}_{ij}	+0.6	+0.7	+0.55	0	+0.75	+0.6	+0.65	+0.55	+0.2 +0.25

Since the reduced costs are nonnegative, the above solution is optimal!

©Dennis Bricker, U. of Iowa, 1997

		u_i	.9	1.60	1.35	0.7	0.85	0
u_j	-0.55		.95	4	4	4	.15	1.00 0
u_j	-0.55		.35	1.80	1.40	.80	.30	0
u_j	0		5	.90	1.80	1.60	.70	1 .85 2 0
demand:		5	4	4	11	8	2	sum= 34

Increasing X_{21} by θ results in no change in the total cost, since the reduced cost is zero.

Any increase up to 5 will be feasible, and therefore optimal!

©Dennis Bricker, U. of Iowa, 1997

	v_j	0.9	1.60	1.35	0.7	0.85	0	supply
u_i	-0.55	4	4	4	.15	1.00	0	12
	-0.55	3	.35	1.80	1.40	.30	0	7
	0	5	-3	.90	1.80	1.60	.70	15
demand:	5	4	4	11	8	2	sum= 34	

For example, an increase of 3 is optimal (although this gives us 9 positive shipments, which exceeds the number of basic variables, and is therefore optimal but not basic!)

©Dennis Bricker, U. of Iowa, 1997

A Complication: Degeneracy

Example:

	v_j	5	3	8	4	4	8	supply
u_i	0	2	2	5	3	2	8	4
	1	14	4	5				4
	4	4	2	8				8
demand	2	4	10					

A degenerate feasible solution is one in which a basic variable is zero.

When this occurs, the next basis change may not result in an improvement in the total cost!

©Dennis Bricker, U. of Iowa, 1997

	v_j	5	3	4	4	4	8	supply
u_i	0	2-θ	2+θ					4
	1	14	4	5				4
	4	+θ	8-θ					8
demand	2	4	10					

As θ is increased, two of the basic variables reach zero simultaneously!

Only one basic variable can be replaced by X_{31} , while the other remains in the basis, even though its value is zero.

New bfs is degenerate

©Dennis Bricker, U. of Iowa, 1997

	v_j	5	3	9	4	3	8	supply
u_i	0	0-θ		+θ	4	3	0	4
	-4	14	4	5				4
	-1	2+θ	6-θ					8
demand	2	4	10					

As we try to increase X_{13} , we see that we are immediately "blocked" at $\theta = 0$!

If $\theta > 0$, then X_{11} becomes negative (& the solution is infeasible).

Even though we cannot increase X_{13} , we do change the basis.

©Dennis Bricker, U. of Iowa, 1997

	v_j	4	3	8	4	3	0	supply
u_i	0	5	3	8	4	3	0	4
	-3	14	4	5				4
	0	2	4	6				8
demand	2	4	10					

Cost remains at 88

Reduced costs:

$$\begin{aligned} \bar{C}_{13} &= 8 - (0+4) > 0 \\ \bar{C}_{21} &= 14 - (1+5) > 0 \\ \bar{C}_{31} &= 4 - (4+5) < 0 \\ \bar{C}_{32} &= 2 - (4+3) < 0 \end{aligned}$$

Either X_{31} or X_{32} may enter the solution.
Let's arbitrarily select X_{31}

©Dennis Bricker, U. of Iowa, 1997

Suppose we keep X_{11} in the basis (at value 0)

	v_j	5	3	9	4	3	8	supply
u_i	0	0	4	5	3	4	8	4
	-4	14	4	5				4
	-1	2	4	6				8
demand	2	4	10					

Cost is 88

Reduced costs:

$$\begin{aligned} \bar{C}_{13} &= 8 - (0+9) < 0 \\ \bar{C}_{21} &= 14 - (-4+5) > 0 \\ \bar{C}_{22} &= 4 - (-4+3) > 0 \\ \bar{C}_{32} &= 2 - (-1+3) = 0 \end{aligned}$$

Only X_{13} has a negative reduced cost, so it enters the basis next.

Reduced costs:

$$\begin{aligned} C_{11} &= 5 - (0+4) > 0 \\ C_{21} &= 14 - (-3+4) > 0 \\ C_{22} &= 4 - (-3+3) = 0 \\ C_{32} &= 2 - (0+3) < 0 \end{aligned}$$

Only X_{32} has a negative reduced cost, so we will enter it into the basis.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

	4	3	8	
0	5	3	8	0+0
-3	14	4	5	4
0	2	+0	6-0	8
demand	2	4	10	

supply

At this iteration, even though the solution is degenerate, we are able to increase the variable entering the basis.

The next bfs is NOT degenerate!

	4	2	8	
0	5	3	8	4
-3	14	4	5	4
0	2	4	2	8
demand	2	4	10	

supply

Reduced costs:

$$C_{11} = 5 - (0+4) > 0$$

$$C_{12} = 3 - (0+2) > 0$$

$$C_{21} = 14 - (-3+4) > 0$$

$$C_{22} = 4 - (-3+2) > 0$$

This solution is optimal!

Cost is 84

©Dennis Bricker, U. of Iowa, 1997

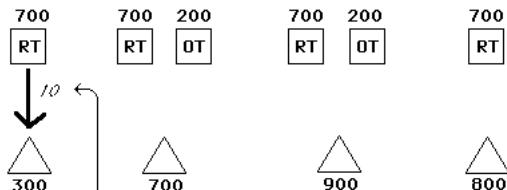
A Production Planning Problem

- demands for next 4 weeks (which must be satisfied) are: 300, 700, 900, and 800
- regular production capacity is 700/week
- overtime is available in the SECOND & THIRD weeks, adding 200 to the production capacity
- production costs are \$10/unit during weeks #1&2, increasing to \$15/unit during weeks #3&4; overtime adds \$5/unit to the cost.
- excess production may be stored at a cost of \$3/unit per week.

How should production be scheduled to minimize costs?

©Dennis Bricker, U. of Iowa, 1997

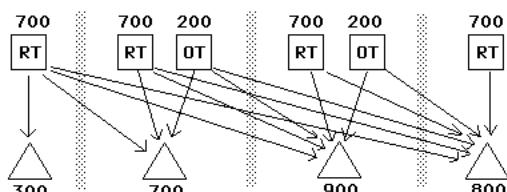
Units which are produced in week #1 and which satisfy demand in week #1 are modeled as a flow from the source node to the destination node:



The cost of "transportation" is the production cost

©Dennis Bricker, U. of Iowa, 1997

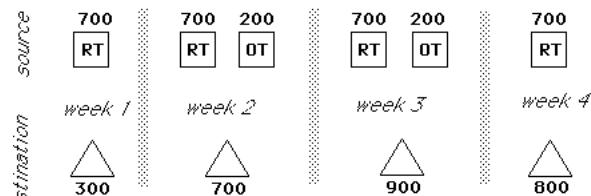
Flows in this model do not represent changes in geographical location!



Note that flows above are never "backward" in time.

A TRANSPORTATION model of production planning:

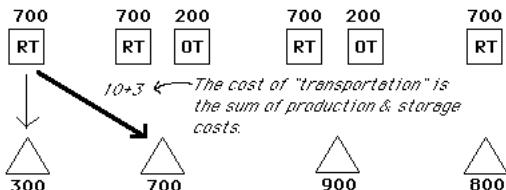
For each week, represent each of regular and overtime capacities as a source:



Likewise, for each week represent each demand as a destination.

©Dennis Bricker, U. of Iowa, 1997

Units which are produced in week #1 and which are used to satisfy the demand in week #2 are modeled by a flow from the week #1 source to the week #2 destination:



The cost of "transportation" is the sum of production & storage costs.

©Dennis Bricker, U. of Iowa, 1997

Transportation Tableau

	WEEK 1	WEEK 2	WEEK 3	WEEK 4	UNUSED	
DEMAND						capacity
RT	10					700
RT	+∞	13				700
OT	+∞	10	13			200
RT	+∞		16			700
OT	+∞		16			200
RT	+∞					700
WEEK 1						
WEEK 2						
WEEK 3						
WEEK 4						
demand: 300	700	900	800	500		
infinite cost prevents shipments backward in time.						

©Dennis Bricker, U. of Iowa, 1997

What meaning could a shipment backward in time have?

Suppose we produce a unit in week 2 with which to satisfy week 1's demand:

