



**Exchange heuristics**, given an initial tour, try to replace  $k$  edges of the tour with  $k$  edges not on the tour in order to find a shorter tour.

©Dennis Bricker, U. of Iowa, 1997

A  **$k$ -exchange** is performed by deleting  $k$  edges of a tour, and reconnecting the segments so as to form another tour.



Example: a 2-exchange

Edges **ab** and **cd** are replaced by **ac** and **bd**

©Dennis Bricker, U. of Iowa, 1997

For a specified integer  $k$ , a  **$k$ -neighborhood** of a tour is one which might be obtained by a  $k$ -exchange.

If no shorter tour exists in a  $k$ -neighborhood of a tour, that tour is said to be  **$k$ -optimal**.

(Only if a tour is  $k$ -optimal for every  $k \leq N/2$  can we be certain that the tour is truly optimal!)

©Dennis Bricker, U. of Iowa, 1997

### Example

Random Symmetric TSP  
(seed= 133398)



©Dennis Bricker, U. of Iowa, 1997

Lin's 2-exchange heuristic



Initial tour  
(found by  
nearest  
neighbor  
heuristic)

Tour # 1 is 1 2 3 / 11 10 9 8 7 6 5 4 / 12 1  
Length: 321 Improvement: 74



Edges (3,4) &  
(11,12) are  
removed,  
breaking tour  
into 2 paths.  
These can then  
be reconnected  
in only one  
other way.

2-Optimal Tour: 1 2 3 11 10 9 8 7 6 5 4 12 1,  
with length 321



No 2-neighbor  
tour gives any  
improvement

3-exchange  
heuristic



Initial tour  
(found by  
nearest  
neighbor  
heuristic)

Exchange type: 1

Replace edges: 1 3 11, i.e., (1 2), (3 4), & (11 12)  
having length 175  
with edges (1 2), (3 11), & (4 12) having length 101  
Tour # 1 is 1 2 3 11 10 9 8 7 6 5 4 12 1 with length: 321  
Improvement: 74

Because edge (1,2) was  
re-inserted, this is  
actually a 2-neighboring  
tour!

3-exchange  
heuristic



No further  
improvement  
was found.

3-Optimal Tour: 1 2 3 11 10 9 8 7 6 5 4 12 1,  
with length 321

