

Symmetric TSP

undirected network (N.A)

$$\begin{array}{c} \text{Minimize} \sum\limits_{(i,j)\in A} C_{ij}X_{ij} \\ \text{subject to} \quad \sum\limits_{(i,j)\in A} X_{ij} = 2 \quad \forall \ i\in N \\ & \quad X \in \ \ \emph{T}_{j} \qquad \text{= set of all spanning} \\ & \quad 1\text{-trees of network} \end{array}$$

©Dennis Bricker, U. of Iowa, 1997

Lagrangian Relaxation

$$\begin{array}{ll} \textbf{Minimize} \; \sum\limits_{(i,j) \in A} \; C_{ij} X_{ij} + \sum\limits_{i \in N} \; \mathbf{u}_i \left(\sum\limits_{(i,j) \in A} \; X_{ij} - 2 \right) \end{array}$$

subject to

$$X \in T_t$$

A multiplier is associated with each degree constraint, and the degree constraint is relaxed, with the objective "penalized" by violations....

©Dennis Bricker, U. of Iowa, 1997

Lagrangian Relaxation

For fixed u, this is a "minimum spanning 1-tree" problem!

©Dennis Bricker, U. of Iowa, 1997

Finding the Minimum Spanning 1-Tree

Select an arbitrary city, e.g., city #1

Further restrict
the set of 1-trees
to include only those
for which node 1
has degree 2 and
lies on a cycle!

Finding the Minimum Spanning 1-Tree

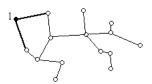
Select an arbitrary city, e.g., city #1

Find the minimum spanning tree of the set of cities excluding the selected city.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Finding the Minimum Spanning 1-Tree



Select an arbitrary city, e.g., city #1

Find the minimum spanning tree of the set of cities excluding the selected city.

Find the two nearest neighbors of the selected city, and add the two corresponding edges.

Lagrangian Dual

For each choice of vector \mathbf{u} , the value of the Lagrangian relaxation $\Phi(\mathbf{u})$ provides us with a **lower bound** on the optimum TSP tour.

The Lagrangian Dual problem is to...

Maximize $\Phi(u)$

$$\Phi(\mathbf{u}) = \text{-} \ \mathbf{2} \sum_{i \in N} \ \mathbf{u}_i + \text{Minimum} \ \sum_{X \ \in \ T_f} \ \sum_{(i,j) \in A} \left(\mathbf{C}_{ij} + \ \mathbf{u}_i + \ \mathbf{u}_j \right) \! X_{ij}$$

For the purpose of finding the minimum spanning 1-tree, the length of edge (i,j) is

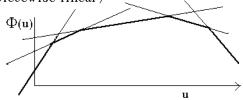
$$C_{ij} + u_i + u_j$$

i.e., the edge length is increased by the "penalties" of the 2 end vertices.

©Dennis Bricker, U. of Iowa, 1997

$$\Phi(\mathbf{u}) = \underset{1 \, \leq \, k \, \leq \, K}{\text{minimum}} \ \sum_{(i,j) \in A} \left(\mathbf{C}_{ij} + \, \mathbf{u}_i + \, \mathbf{u}_j \right) \widehat{X}_{ij}^k - 2 \sum_{i \in N} \, \mathbf{u}_i$$

i.e., Φ is the lower envelope of a finite set of linear functions of u (& is therefore concave piecewise linear)



©Dennis Bricker, U. of Iowa, 1997

subgradient

$$\gamma_i = \sum_{(i,j) \in A} \widehat{X}_{ij}^k - 2$$

That is, if the degree of node i exceeds 2 in the current minimum spanning 1-tree, then the "penalty" u_i should be increased, to discourage selection of edges incident to vertex i, while if the degree is less than 2 (i.e., 1), the "penalty" is decreased, to encourage the selection of another edge incident to vertex i.

©Dennis Bricker, U. of Iowa, 1997

Finding Minimum Spanning 1-tree

- select an arbitrary node k
- find minimum spanning tree of the network with node k deleted
- add to the minimum spanning tree the 2 shortest edges incident to node

Suppose that we were to enumerate the (finitely many) 1-trees of the network:

$$\widehat{X}^k \in \mathcal{T}_{I}$$
, $k=1,2,...$ K

Then

$$\Phi(\mathbf{u}) = \underset{1 \text{ s. k. s. K}}{\text{minimum}} \sum_{(i,j) \in A} \left(\mathbf{C}_{ij} + \mathbf{u}_i + \mathbf{u}_j \right) \widehat{\mathbf{X}}_{ij}^k - 2 \sum_{i \in N} \mathbf{u}_i$$

i.e., Φ is the lower envelope of a finite set of linear functions of u (& is therefore concave piecewise linear)

©Dennis Bricker, U. of Iowa, 1997

 $\begin{array}{ll} If & \widehat{X}^k & \text{is optimal in the evaluation of} \\ then & \Phi(\mathbf{u}) = & \sum\limits_{(i,j) \in A} \left(C_{ij} + \mathbf{u}_i + \mathbf{u}_j \right) \widehat{X}_{ij}^k - 2 \sum\limits_{i \in N} \mathbf{u}_i \end{array}$

and the vector γ

with
$$y_i = \sum_{(i,j) \in A} \widehat{X}_{ij}^k - 2$$

is a subgradient of Φ at u.

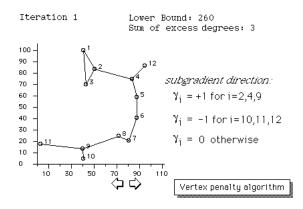
To adjust u, then, step in the direction γ .

©Dennis Bricker, U. of Iowa, 1997

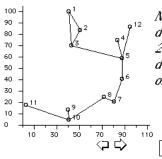
Random Symmetric TSP

(seed= 133398)

Example

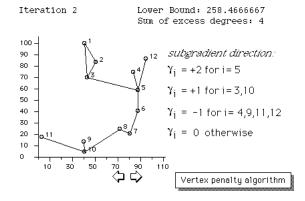


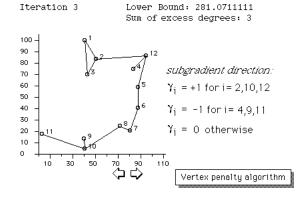
New minimum spanning 1-tree:

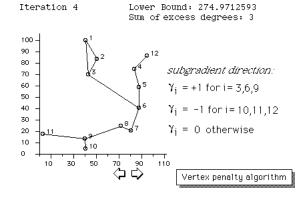


Note that the degrees of nodes 2, 4, and 9 were decreased because of the penalties...

Vertex penalty algorithm







Iteration	Lower Bound	Excess Degree	at Nodes	
1	260 258	3		
3	281	3	2 10 12	
4 5	275 286	3	3 6 9 3 8 10 2 4 7	
6 7	292 302	4 1	2 4 7	9
1 2 3 4 5 6 7 8 9	307 313	2	3 5 3 4	
10 11	313 316	433341222332	8 12 3 7 11	
12	316	3	2 10 12	
13 14	316 318	1	3 4 6	
15 16	318 317	1 3	8 2 7 12	
17 18	318 319	3	3 7 11 4 10	
19 20	320 319	1 3 2 2 2	2 4 9 2 10 12 3 8 10 2 2 4 7 3 8 17 2 3 5 4 3 7 11 2 10 12 3 7 11 2 10 12 4 10 2 12 5 4 10 2 12 5	
20	319 /L	. ~		
	~	-	Vertex	penalty algorithm

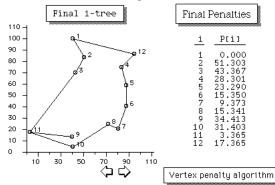
Iteration	Lower Bound	Excess Degree	at Nodes
21 22 23 24 25 26 27 28 29	320 319 320 320 320 321 321 321 321	1 3 3 2 1 1 1 3	11 2 10 12 3 6 10 8 10 5 4 8 2 7 12 6
30	321	1	11

 $\Diamond \Diamond$

Vertex penalty algorithm

***Failed to converge.

Greatest Lower Bound on tour length is 320.7602064



***Failed to converge.

Greatest Lower Bound on tour length is 320.7602064

