

Example

Consider a transportation problem in which some of the demands are random variables:

DESTINATIONS					
SOURCES	1	2	3	4	supply
1	2	3	11	7	6
2	1	1	6	1	1
3	5	8	15	9	10
demand	7	5	D_3	D_4	

©Dennis Bricker, U. of Iowa, 1998

The demands at destinations #3 & 4 are *random* with known probability distributions:

d	$P\{D_3=d\}$
1	$\frac{1}{3}$
3	$\frac{1}{3}$
5	$\frac{1}{3}$

d	$P\{D_4=d\}$
0	$\frac{1}{4}$
4	$\frac{3}{4}$

Shipments X_{ij} must be selected *before* the values of D_3 and D_4 are known!

If, after making the shipments, the demand is different from the quantity shipped, we must act so as to compensate for the difference:

- if demand exceeds amount shipped, the amount short must be obtained at high cost (e.g., by purchasing locally, or shipment by air, etc.)
- if demand is less than amount shipped, the excess must be stored, sold at a loss, or otherwise disposed of.

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

In this case, assume penalties of \$9 and \$3 per unit short at destinations #3 and 4, respectively, but no cost incurred by excess supplies.

We wish to minimize the sum of the

- *shipping costs*
- *expected shortage penalties*

©Dennis Bricker, U. of Iowa, 1998

d	$P\{D_3=d\}$
1	$\frac{1}{3}$
3	$\frac{1}{3}$
5	$\frac{1}{3}$

d	$P\{D_4=d\}$
0	$\frac{1}{4}$
4	$\frac{3}{4}$

Six possible outcomes:

k	1	2	3	4	5	6
D_3^k	1	3	5	1	3	5
D_4^k	0	0	0	4	4	4
P^k	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Joint probabilities assume demands are independent random variables!

©Dennis Bricker, U. of Iowa, 1998

Define:

"First-stage variables"

X_{ij} = quantity shipped from source i to destination j

"Second-stage variables"

Y_j^{k+} = surplus at destination j if outcome k occurs
i.e., amount to be disposed of.

Y_j^{k-} = shortage at destination j if outcome k occurs
i.e., amount to be purchased locally.

Equivalent Deterministic LP Model

$$\text{Minimize } \sum_{i=1}^3 \sum_{j=1}^4 C_{ij} X_{ij} + \sum_{k=1}^6 \sum_{j=3}^4 P^k E_j Y_j^k$$

subject to

$$\sum_{j=1}^4 X_{ij} \leq S_i, \quad i=1, 2, 3$$

penalty/unit shortage

$$\sum_{i=1}^3 X_{ij} \geq D_j, \quad j=1 \& 2$$

$$\sum_{i=1}^3 X_{ij} + Y_j^{k+} - Y_j^{k-} = D_j^k, \quad j=3 \& 4, k=1, \dots, 6$$

$$X_{ij} \geq 0, \quad Y_j^{k+} \geq 0, \quad Y_j^{k-} \geq 0$$

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

Size of the LP

Variables: 12 X's
24 Y's
36 total

Constraints: 17

©Dennis Bricker, U. of Iowa, 1998

The Coefficient Matrix of the constraints is not a node-arc incidence matrix, but does contain only ± 1 & 0.

Can we manipulate the rows to obtain a node-arc incidence matrix, with each column containing a ± 1 pair?

	X_{1j}	X_{2j}	X_{3j}	$j=3$	$Y_{j=4}^{1\pm}$	$Y_{j=4}^{2\pm}$	$Y_{j=4}^{3\pm}$	$Y_{j=4}^{4\pm}$	$Y_{j=4}^{5\pm}$	$Y_{j=4}^{6\pm}$	
1	1	1	1	1	-	-	-	-	-	-	6
2	1	1	1	1	-	-	-	-	-	-	1
3	1	1	1	1	-	-	-	-	-	-	0
4	1	1	1	1	-	-	-	-	-	-	7
5	1	1	1	1	-	-	-	-	-	-	5
6	1	1	1	1	1	-1	-1	-	-	-	1
7	1	1	1	1	1	-1	-1	-	-	-	0
8	1	1	1	1	1	-1	-1	-	-	-	3
9	1	1	1	1	1	-1	-1	-	-	-	0
10	1	1	1	1	1	-1	-1	-	-	-	5
11	1	1	1	1	1	-1	-1	-	-	-	0
12	1	1	1	1	1	-1	-1	-	-	-	1
13	1	1	1	1	1	-1	-1	-	-	-	4
14	1	1	1	1	1	-1	-1	-	-	-	3
15	1	1	1	1	1	-1	-1	-	-	-	4
16	1	1	1	1	1	-1	-1	-	-	-	5
17	1	1	1	1	1	-1	-1	-	-	-	4

Constraint Coefficient Matrix
©Dennis Bricker, U. of Iowa, 1998

Perform the following row operations in the sequence indicated:

$R_{17} \leftarrow R_{17} - R_{15}$, i.e., subtract row 15 from row 17
 $R_{16} \leftarrow R_{16} - R_{14}$, i.e., subtract row 14 from row 16,
 $R_{15} \leftarrow R_{15} - R_{13}$, i.e., subtract row 13 from row 15,
etc.

$R_i \leftarrow R_i - R_{i-2}$, i=17, 16, 15, 14, ... 8

Next, negate all but Rows 1, 2, & 3.

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

	X_{1j}	X_{2j}	X_{3j}	$j=3$	$Y_{j=4}^{1\pm}$	$Y_{j=4}^{2\pm}$	$Y_{j=4}^{3\pm}$	$Y_{j=4}^{4\pm}$	$Y_{j=4}^{5\pm}$	$Y_{j=4}^{6\pm}$	
1	1	1	1	1	-	-	-	-	-	-	6
2	1	1	1	1	-	-	-	-	-	-	1
3	1	1	1	1	-	-	-	-	-	-	0
4	-1	-1	-1	-1	-	-	-	-	-	-	7
5	-1	-1	-1	-1	-	-	-	-	-	-	5
6	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
7	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
8					+1 -1	-1 +1	-	-	-	-	3
9					+1 -1	-1 +1	-	-	-	-	0
10					+1 -1	-1 +1	-	-	-	-	2
11					+1 -1	-1 +1	-	-	-	-	0
12					+1 -1	-1 +1	-	-	-	-	4
13					+1 -1	-1 +1	-	-	-	-	4
14					+1 -1	-1 +1	-	-	-	-	2
15					+1 -1	-1 +1	-	-	-	-	0
16					+1 -1	-1 +1	-	-	-	-	2
17					+1 -1	-1 +1	-	-	-	-	0

...almost a node-arc incidence matrix!

©Dennis Bricker, U. of Iowa, 1998

The transformation to a node-arc incidence matrix may now be completed by appending a new (redundant) row, obtained by negating the sum of Rows #1 through #17.

Columns already having a ± 1 pair will have a sum of zero, while columns having only a +1 or a -1 will have the pair completed.

We next change rows 1, 2, & 3 to equations by adding slack variables.

Each column now contains one ± 1 pair except for the last seven (the three slack variables added to rows 1 to 3, together with the Y variables for the last (sixth) outcome). These seven columns each contain either a +1 or a -1 only.

©Dennis Bricker, U. of Iowa, 1998

	X_{1j}	X_{2j}	X_{3j}	$j=3$	$Y_{j=4}^{1\pm}$	$Y_{j=4}^{2\pm}$	$Y_{j=4}^{3\pm}$	$Y_{j=4}^{4\pm}$	$Y_{j=4}^{5\pm}$	$Y_{j=4}^{6\pm}$	
1	1	1	1	1	-	-	-	-	-	-	6
2	1	1	1	1	-	-	-	-	-	-	1
3	1	1	1	1	-	-	-	-	-	-	0
4	-1	-1	-1	-1	-	-	-	-	-	-	7
5	-1	-1	-1	-1	-	-	-	-	-	-	5
6	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
7	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
8					+1 -1	-1 +1	-	-	-	-	3
9					+1 -1	-1 +1	-	-	-	-	0
10					+1 -1	-1 +1	-	-	-	-	2
11					+1 -1	-1 +1	-	-	-	-	0
12					+1 -1	-1 +1	-	-	-	-	4
13					+1 -1	-1 +1	-	-	-	-	4
14					+1 -1	-1 +1	-	-	-	-	2
15					+1 -1	-1 +1	-	-	-	-	0
16					+1 -1	-1 +1	-	-	-	-	2
17					+1 -1	-1 +1	-	-	-	-	0
18											•••

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

ROW #		$j=3$	$j=4$	S_1	S_2	S_3
1		1	1	6		
2		-	+	-	+	
3				1	1	10
4				-7		
5				-5		
6				-1		
7				0		
8	••••			-2		
9				0		
10				-2		
11				0		
12				4		
13				-4		
14				-2		
15				0		
16		-1+1	-1+1			-2
17						0
18		+1-1	+1-1	-1	-1	-1
						4

Let's now draw the network, with a node for each row, an arc for each column

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

Flow in arc $8 \rightarrow 6 = Y_3^{1+}$ surplus at dstn 3 if outcome #1

Flow in arc $6 \rightarrow 8 = Y_3^{1-}$ shortage at dstn 3 if outcome #1

etc.

©Dennis Bricker, U. of Iowa, 1998

Optimal Solution

©Dennis Bricker, U. of Iowa, 1998

Ship to satisfy minimum demand (1) at dstn. 3 maximum demand (4) at dstn 4