

Example

Consider a transportation problem in which some of the demands are random variables:

	DE 1	STIN 2	IATIO 3	NS 4	supply
۱ <u>۵</u>	2	3	11	7	6
SOURCES	1	1	6	1	1
Σ 3	5	8	15	9	10
demand	7	5	D_3	D ₄	

Dennis Bricker, U. of Iowa, 1998

The demands at destinations #3 & 4 are *random* with known probability distributions:

P{D ₃ =d}
1/3
1/3
1/3

d	P{D ₄ =d}
0	1/4
4	3/4

Shipments X_{ij} must be selected *before* the values of D₃ and D₄ are known!

If, after making the shipments, the demand is different from the quantity shipped, we must act so as to compensate for the difference:

- if demand exceeds amount shipped, the amount short must be obtained at high cost (e.g., by purchasing locally, or shipment by air, etc.)
- if demand is less than amount shipped, the excess must be stored, sold at a loss, or otherwise disposed of.

@Dennis Bricker, U. of Iowa, 1998

In this case, assume penalties of \$9 and \$3 per unit short at destinations #3 and 4, respectively, but no cost incurred by excess supplies.

We wish to minimize the sum of the

- · shipping costs
- expected shortage penalties

@Dennis Bricker, U. of Iowa, 1998

1	d	P{D ₃ =d}	
l III	1	1/3	
5 1/3	3	1/3	
1 8	5	1/3	

d	P{D ₄ =d}
0	1/4
4	3/4

@Dennis Bricker, U. of Iowa, 1998

Six possible outcomes:

k	1	2	3	4	5	6
D_3^k	1	3	5	1	3	5
D_4^k	0	0	0	4	4	4
P ^k	1/12	1/12	1/12	1/4	1/4	1/4

Joint probabilities assume demands are independent random variables!

@Dennis Bricker, U. of Iowa, 1998

Define:

"First-stage variables"

 X_{ij} = quantity shipped from source i to destination j

"Second-stage variables"

 Y_j^{k+} surplus at destination j if outcome k occurs i.e., amount to be disposed of.

Y_j^{k-}= shortage at destination j if outcome k occurs i.e., amount to be purchased locally:

Equivalent Deterministic LP Model

$$\begin{aligned} & \text{Minimize } \sum_{i=1}^{3} \sum_{j=1}^{4} C_{ij} X_{ij} + \sum_{k=1}^{6} \sum_{j=3}^{4} P^{k} E_{j} Y_{j}^{k-} \\ & \text{subject to } \end{aligned} \\ & \frac{\sum_{i=1}^{4} X_{ij} \leq S_{i} \text{ , } i = 1, 2, 3}{\sum_{j=1}^{3} X_{ij} \geq D_{j} \text{ , } j = 1 \& 2} \\ & \frac{\sum_{i=1}^{3} X_{ij} \geq D_{j} \text{ , } j = 1 \& 2}{\sum_{i=1}^{3} X_{ij} + Y_{j}^{k-} - Y_{j}^{k+} = D_{j}^{k} \text{ , } j = 3 \& 4, k = 1, \dots 6} \\ & X_{ij} \geq 0, Y_{j}^{k+} \geq 0, Y_{j}^{k-} \geq 0 \end{aligned}$$

Size of the LP

Variables: 12 X's

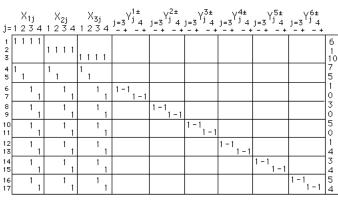
24 Y's 36 total

Constraints: 17

@Dennis Bricker, U. of Iowa, 1998

The Coefficient Matrix of the constraints is not a node-arc incidence matrix, but does contain only $\pm 1~\&~0$.

Can we manipulate the rows to obtain a nodearc incidence matrix, with each column containing a ±1 pair?



Constraint

Coefficient Matrix

Perform the following row operations in the sequence indicated:

 $\begin{array}{l} R_{17} \leftarrow R_{17} - R_{15} \ , \textit{i.e., subtract row 15 from row 17} \\ R_{16} \leftarrow R_{16} - R_{14} \ , \textit{i.e., subtract row 14 from row 16,} \\ R_{15} \leftarrow R_{15} - R_{13} \ , \textit{i.e., subtract row 13 from row 15,} \\ & \textit{etc.} \end{array}$

$$R_i \leftarrow R_i - R_{i-2}$$
, i=17, 16, 15, 14, ... 8

Next, negate all but Rows 1, 2, & 3.

@Dennis Bricker, U. of Iowa, 1998

...almost a node-arc

incidence matrix!

The transformation to a node-arc incidence matrix may now be completed by appending a new (redundant) row, obtained by negating the sum of Rows #1 through #17.

Columns already having a ±1 pair will have a sum of zero, while columns having only a +1 or a -1 will have the pair completed.

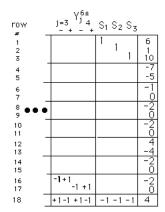
@Dennis Bricker, U. of Iowa, 1998

We next change rows 1, 2, & 3 to equations by adding slack variables.

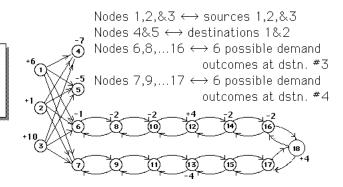
Each column now contains one ± 1 pair except for the last seven (the three slack variables added to rows 1 to 3, together with the Y variables for the last (sixth) outcome). These seven columns each contain either a+1 or a-1 only.

@Dennis Bricker, U. of Iowa, 1998

X _{1j} =1234	X _{2j} 1 2 3 4	X _{3j} 1234	j=3 ^{Yj} 4 -+-+	j=3 Y _{j 4}	y ^{3±} j=3 [/] 4 -+ -+	y ^{4±} j=3 ⁴ 4	j=3 ^{Yj} 4	
1111	1 1 1 1	1111						
-1	-1 -1	-1 -1						
-1 -1	-1 -1	-1 -1	-1 +1 -1 +1					
			+1 -1 +1 -1					_ •
1				+1-1 +1-1	-1+1 -1+1			
2					+1-1 +1-1	-1 +1 -1 +1		
4						+1 -1 +1 -1	-1 +1 -1 +1	
7							+1 -1 +1 -1	
3								L

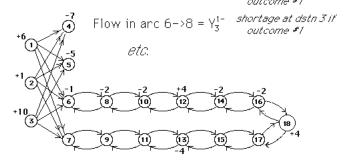


Let's now draw the network, with a node for each row, an arc for each column



@Dennis Bricker, U. of Iowa, 1998

Flow in arc 8->6 = Y_3^{1+} surplus at dstn 3 if outcome #1



@Dennis Bricker, U. of Iowa, 1998

Optimal Solution

@Dennis Bricker, U. of Iowa, 1998

