

This image shows the main interface of the 'Stochastic Processes' Hypercard stack. At the top is a title box with 'Stochastic Processes'. Below it is a text box containing the author's information: 'This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dbricker@icaen.uiowa.edu'. A small 'author' icon is in the bottom left corner. The bottom of the stack includes a copyright notice: '©D.L.Bricke, U.of Iowa, 1998'.

©D.L.Bricke, U.of Iowa, 1998

Stochastic Process

For each t , $t \in T$, let X_t be a random variable. Then the collection of random variables $\{X_t, t \in T\}$ is a stochastic process.

Generally, t represents a time parameter.

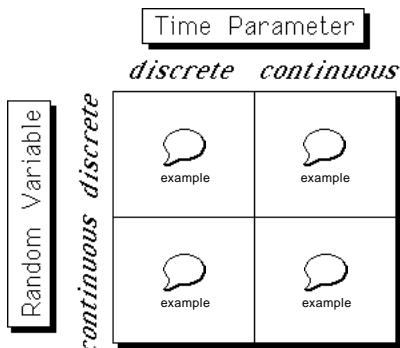
A stochastic process is classified as **discrete-parameter** if the index set $T = \{0, 1, 2, 3, \dots\}$ and **continuous-parameter** if $T = [0, +\infty)$, i.e., the set of non-negative real numbers.

The "State Space" of the process is the set of possible values that X_t may assume.

The process is classified as **discrete-valued** if the state space is a discrete set (e.g., the integers), and **continuous-valued** otherwise (e.g., if X_t may be any non-negative real number.)

©D.L.Bricke, U.of Iowa, 1998

©D.L.Bricke, U.of Iowa, 1998



©D.L.Bricke, U.of Iowa, 1998

Examples:

Discrete-parameter, discrete-valued process:

Let the index set T refer to customer numbers, $T = \{1, 2, 3, \dots, n, \dots\}$ and let the random variable X_n be the number of customers in the system when service is completed for the n^{th} customer.

Common Stochastic Processes

- ☞ Discrete-time Markov Chains
- ☞ Continuous-time Markov Chains
- ☞ Bernoulli Process
- ☞ Poisson Process
- ☞ Birth-death Process

©D.L.Bricke, U.of Iowa, 1998

Continuous-parameter, discrete-valued process

Let the index set T refer to time (continuous) $T = [0, +\infty)$ and let the random variable X_t be the number of customers in the system at time t .

Discrete-parameter, continuous-valued process

Let the index set T refer to customer number,
 $T = \{1, 2, 3, \dots, n, \dots\}$
and let the random variable X_n be the waiting
time of the n^{th} customer prior to service, so that
 $X_n \in [0, +\infty)$

Continuous-parameter, continuous-valued process

Let the index set T refer to time (continuous), and
let the random variable X_t be the amount of service
(in minutes) which has been provided to the customer
currently being served.

