

@D.L.Bricker, U. of Iowa, 1998

A stochastic process is classified as *discrete-parameter*

if the index set T = $\{0, 1, 2, 3, \dots\}$ and

continuous-parameter

if $T = [0, +\infty)$, i.e., the set of non-negative real numbers.

©D.L.Bricker, U. of Iowa, 1998

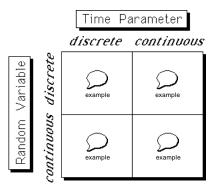
Stochastic Process

For each t, teT, let X_t be a random variable. Then the collection of random variables $\{X_t, \ t {\in} T\}$

is a stochastic process.

Generally, t represents a time parameter.

⊚D.L.Brick er, U. of Iowa, 1998


The "State Space" of the process is the set of possible values that X_t may assume.

The process is classified as *discrete-valued* if the state space is a discrete set (e.g., the integers), and

continuous-valued

otherwise (e.g., if X_t may be any non-negative real number.)

© D.L.Bricker, U. of Iowa, 1998

© D.L.Bricker, U. of Iowa, 1998

Examples:

Discrete-parameter, discrete-valued process:

Let the index set T refer to customer numbers, T = {1, 2, 3, ... n, ... }

and let the random variable $\,X_n$ be the number of customers in the system when service is completed for the n^{th} customer.

⊚D.L.Bricker, U. of Iowa, 1998

Common Stochastic Processes

- 🕼 Discrete-time Markov Chains
- 🕼 Continuous-time Markov Chains
- 😰 Bernoulli Process
- 🗊 Poisson Process
- 🗊 Birth-death Process

⊚D.L.Bricker, U. of Iowa, 1998

$Continuous\mbox{-} parameter, \mbox{ discrete-valued process}$

Let the index set T refer to time (continuous) $T = [0, +\infty)$ and let the random variable X_t be the number of customers in the system at time t.

Stochastic Processes Intro.

© D.L.Bricker, U. of Iowa, 1998

⊚D.L.Bricker, U. of Iowa, 1998

Continuous-parameter, continuous-valued process

Let the index set T refer to time (continuous), and let the random variable $\,{\rm X}_t\,$ be the amount of service (in minutes) which has been provided to the customer currently being served.

⊲⊃

Discrete-parameter, continuous-valued process

Let the index set T refer to customer number,

and let the random variable X_n be the waiting

time of the nth customer prior to service, so that

T = {1, 2, 3, ... n, ... }

 $X_n \in [0, +\infty)$

⊲⊃