

This can be a truly huge LP to solve!

Stochastic LP via Benders
Benders decomposition partitions the variables into,
one set has discrete values (Recourse), the number
of variables $L = C \times 10^3$ to 10¹⁰ while the number of rows
is $S \times 10^3$ to 10¹⁰.

11/3/00

page 1

In this example, we minimize the 1st stage cost
Minimize $c_1 x_1 + c_2 y_1 + c_3 z_1$
subject to $Ax_1 + Ay_1 + Az_1 \leq b$
is equivalent to subject to the "master" 1st stage cost
and
 $Ax_1 + A^k y^3 + B^3 z^3 \leq b^3$ the limitations
• **Stochastic Linear Programming**
That is, for any x , we evaluate $w(x)$ by adding the
1st stage cost $c_1 x$ to the sum of the 2nd stage
solutions $w(x)$ for y^3 and z^3 obtained by the master problem

Stochastic LP with Recourse

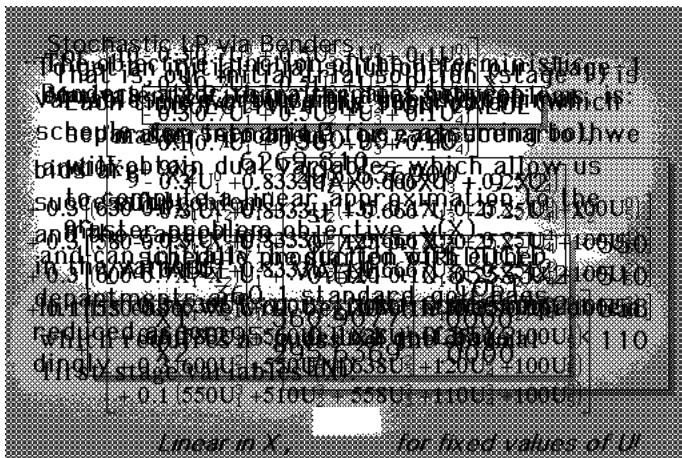
This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@caen.uiowa.edu

Consider again the stochastic
problem of the golf-bag manu-
facturer (Par, Inc.)

Objective

$$\begin{aligned} \text{Max } 10X_1 + 9X_2 + 0.3(8Y_1^0 - 5T_{CD}^0 - 6T_S^0 - 8T_F^0 - 4T_{IP}^0) \\ + 0.3(8Y_1^1 - 5T_{CD}^1 - 6T_S^1 - 8T_F^1 - 4T_{IP}^1) \\ + 0.3(8Y_1^2 - 5T_{CD}^2 - 6T_S^2 - 8T_F^2 - 4T_{IP}^2) \\ + 0.1(8Y_1^3 - 5T_{CD}^3 - 6T_S^3 - 8T_F^3 - 4T_{IP}^3) \end{aligned}$$

Equivalent Deterministic Linear Programming Model



Now, using the trial values of X , namely

$$\begin{aligned} X_1 &= 360.907740 \\ X_2 &= 295.636900 \end{aligned}$$

we solve the second-stage problem for each of the four scenarios:

Scenario #0	Company fails to obtain both contracts
Scenario #1	Company wins contract #1, loses #2
Scenario #2	Company wins contract #2, loses #1
Scenario #3	Company wins both contracts #1 & #2

Click to obtain solution
for each scenario!

SCENARIO 0 / THE FUNDAMENTAL VALUE		Contracts	
SLACK OR DUAL		SUPPLY PRICES	
ROW 1083 69116015PRICES		TCD0 - TS0	
MAX 8 Y10 - 5 TCD0 - 6 TS0		2) 0.7 Y10 - TCD0 <= 31.723	
SUBJECT TO		3) 0.5 Y10 - TS0 <= 133.178	
4) Y10 - 100 <= 69.997		4) Y10 - TF1 <= 69.997	
5) 0.1 Y10 - TIP1 <= 15		5) 0.1 Y10 - TIP1 <= 15	
6) TF1 <= 100		6) TF1 <= 100	
END		END	
production schedule of 360.9 standard and		295.6 deluxe golf bags.	
SCENARIO 0			

RECOURSE

That is, if the initial trial solution $X = (360.9, 295.6)$ were chosen, and scenario 0 occurs, i.e., neither bid was successful, then some capacity remains idle in each of the departments... the optimal recourse would be to schedule production of an additional 98.2 standard golf bags and an additional 23.275 hours in the cutting & dyeing department.

SCENARIO 0

SCENARIO 1

company wins 1st contract,
loses 2nd contract

MAX	8 Y11 - 5 TCD1 - 6 TS1
	- 8 TF1 - 4 TIP1
SUBJECT TO	
2)	0.7 Y11 - TCD1 <= 31.723
3)	0.5 Y11 - TS1 <= 133.178
4)	Y11 - TF1 <= 69.997
5)	0.1 Y11 - TIP1 <= 15
6)	TF1 <= 100
END	

RECOURSE

That is, if the trial stage-1 solution $X = (360.9, 295.6)$ were used, and the first bid (but not the second) were successful, each of the four departments will have excess capacity... the optimal recourse is to schedule production of an additional 69.997 standard golf bags, and use of 17.275 hours of overtime in the cutting & dyeing department.

SCENARIO 1

Scenario 1: Diva Benders loses 1st contract, wins 2nd contract
SCENARIO 1 **FUNCTION VALUE** .0000000
OBJECTIVE FUNCTION VALUE 618.6015

11/3/00

page 4

That is, the company should REDUCE		
VARIABLE	VALUE	COST REDUCED
• Y12	.0000	0.0000000
TCD3 Y2	0.0000000	0.0000000
TS3 CD2	0.00027496	0.0000000
TF2	2.0000000	0.0000000
TIP2	8.3000000	0.0000000
TF2	4.0000000	4.5000000
RESCOURSE	8.0002	.0000
	100.0000	

SCENARIO 2

SCENARIO 2 company loses 1st contract, wins 2nd contract

MAX 8 Y12 - 5 TCD2 - 6 TS2
- 8 TF2 - 4 TIP2
SUBJECT TO
2) 0.7 Y12 - TCD2 <= 51.723
3) 0.5 Y12 - TS2 <= 123.178
4) Y12 - TF2 <= 79.997
5) 0.1 Y12 - TIP2 <= 10
6) TF2 <= 100
END

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	.0000	5.0000
3)	83.1795	.0000
4)	.0000	4.5000
5)	2.0003	.0000
6)	100.0000	.0000

SCENARIO 2

SCENARIO 3 company wins both contracts!

MAX 8 Y13 - 5 TCD3 - 6 TS3
- 8 TF3 - 4 TIP3
SUBJECT TO
2) 0.7 Y3 - TCD3 <= 1.723
3) 0.5 Y3 - TS3 <= 83.178
4) Y3 - TF3 <= 0
5) 0.1 Y3 - TIP3 <= 0
6) TF3 <= 100
END

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	1.7230	.0000
3)	83.1780	.0000
4)	.0000	8.0000
5)	.0000	.0000
6)	100.0000	.0000

SCENARIO 3

We now compute this objective for fixed values of W .

RE COURSE

The expected profit if $X=(360.9, 295.6)$ were selected as the values of the stage-1 variables, is

profit	
6269.81	1st stage
0.3x1083.6	scenario 0
0.3x 473.6	scenario 1
0.3x 618.6	scenario 2
0.1x 0	scenario 3
6922.6	TOTAL

1

OBJECTIVE FUNCTION VALUE

1416.000

VARIABLE	VALUE	REDUCED COST
X1	708.00	.0000
X2	.00	.0666

Stop Iteration Procedure
Benders ALGUE
OBJE Right-Hand-Sides of
1) 2nd Stage Problems
1)

VARIABLE	VALUE	REDUCED COST
VARIABLE	.000000	Reduced Cost
row 0	61.000000	3.000000
1 TCD0	134.400000	16.40000004
2 TSO	24680.000000	196.000000
3 TFO	0 .000000	4.00000000
4 ART0	64.20000000	94.00000000
5 ART100	.000000	109.000000

11/3/00

page 6

Now, using the trial values of X, namely

X1 708.00

X2 .00

we solve the second-stage problem for each of the four scenarios:

- Scenario #0 Company fails to obtain both contracts
- Scenario #1 Company wins contract #1, loses #2
- Scenario #2 Company wins contract #2, loses #1
- Scenario #3 Company wins both contracts #1 & #2

*Click to obtain solution
for each scenario!*

SCENARIO 0 company loses both contracts

```

MAX 8 Y0 - 5 TCD0 - 6 TSO
      - 8 TFO - 4 TIPO - 100 ART
SUBJECT TO
 2) 0.7 Y0 - TCD0 - ART <= 134.4
 3) 0.5 Y0 - TSO - ART <= 0
 4) Y0 - TFO - ART <= 64.2
 5) 0.1 Y0 - TIPO - ART <= 45
 6) TFO <= 100
END

```


ROW	SLACK OR SURPLUS	DUAL PRICES
2)	89.460000	.000000
3)	.000000	6.000000
4)	.000000	5.000000
5)	38.580001	.000000
6)	100.000000	.000000

SCENARIO 1 company wins 1st contract,
loses 2nd contract

```

MAX 8 Y1 - 5 TCD1 - 6 TS1
      - 8 TF1 - 4 TIP1 - 100 ART
SUBJECT TO
 2) 0.7 Y1 - TCD1 - ART <= 84.4
 3) 0.5 Y1 - TS1 - ART <= 206
 4) Y1 - TF1 - ART <= -80
 5) 0.1 Y1 - TIP1 - ART <= 54.2
 6) TF1 <= 100
END

```


ROW	SLACK OR SURPLUS	DUAL PRICES
2)	84.400001	.000000
3)	206.000000	.000000
4)	.000000	8.000000
5)	54.200000	.000000
6)	20.000000	.000000

1) =5800.000

VARIABLES VALUE REDUCED COST 1st contract,
 Y3 .000000 92.000000 2nd contract
 TCD3 .000000 5.000000
 TS3 MAX .000000 - 5 TCD3 - 6 TS3
 TF3 100.000000 - 8 TF3 - 4 TIP3 - 100 ART
 TIP3 SUBJECT TO .000000 4.000000
 ART 502.000000 Y2 - 92.000000 <= 104.4
 3) 0.5 Y2 - TS2 - ART <= 196
 4) Y2 - TF2 - ART <= -70
 5) 0.1 Y2 - TIP2 - ART <= 49.2
 6) TF2 <= 100
 END

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	104.400000	.000000
3)	196.000000	.000000
4)	.000000	8.000000
5)	49.200000	.000000
6)	30.000000	.000000

SCENARIO 3 company wins both contracts!

MAX 8 Y3 - 5 TCD3 - 6 TS3
 - 8 TF3 - 4 TIP3 - 100 ART
 SUBJECT TO
 2) 0.7 Y3 - TCD3 - ART <= 54.4
 3) 0.5 Y3 - TS3 - ART <= 156
 4) Y3 - TF3 - ART <= -150
 5) 0.1 Y3 - TIP3 - ART <= 39.2
 6) TF3 <= 100
 END

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	104.400000	.000000
3)	206.000000	.000000
4)	.000000	100.000000
5)	89.200000	.000000
6)	.000000	92.000000

The expected profit if $X=(708, 0)$ were selected as the values of the stage-1 variables, is

profit	
7080	1st stage
0.3x 321.00	scenario 0
0.3x -640.00	scenario 1
0.3x -560.00	scenario 2
0.1x -5800.00	scenario 3
6236.3	TOTAL

DUAL PRICES

The optimal dual variables from the subproblem will be used to compute a linear approximation to $v(X)$

	scenario			
	0	1	2	3
U ₁	.000	.000	.000	.000
U ₂	6.000	.000	.000	.000
U ₃	5.000	8.000	8.000	100.000
U ₄	.000	.000	.000	.000
U ₅	.000	.000	.000	92.000

Master Problem handles variables which optimize the subproblem (0.5) Two obtain a linear function in the firm's stage 1 variables U_1^1, U_2^1, U_3^1 and X_1 and X_2 :

11/3/00

page 8

Max $Z = 30.71U_1^1 + 11.18U_2^1 + 10.12U_3^1 + 0.1U_1^3 + 0.5U_2^3 + U_3^3 + 0.1U_1^3$
 subject to
 $Z \leq 2X_1^2 + 3.366U_1^1 + 9.666U_2^1 + 0.25U_3^1$
 $9 - 0.3U_1^1 - 0.3333U_2^1 - 0.6667U_3^1 \leq 11.680$
 $-0.3U_1^1 + 0.3333U_2^1 + 0.6667U_3^1 + 0.25U_3^1$
 $X_1^1 = (70.8 - 0.1U_1^1 - 0.3333U_2^1 - 0.6667U_3^1 + 0.25U_3^1)$
 the first-stage problem gives 6583.4
 $0.3U_1^1 + 6000X_1^1 + 7056X_2^1 + 18000X_3^1$
 which agrees with the total expected profit
 $+ 0.31580U_1^1 + 1500U_2^1 + 625U_3^1 + 1250U_1^3 + 1000U_2^3$
 $+ 0.51600U_1^1 + 5500U_2^1 + 6380U_3^1 + 1200U_1^3 + 1000U_2^3$
 this approximation is 6583.4 at $X_1^1 = 0$

no!
 We now compute this objective for fixed values of U !

OBJECTIVE FUNCTION VALUE

1) 7172.817

VARIABLE	VALUE	REDUCED COST
X1	492.6717	.000000
X2	285.1298	.000000
Z	7172.8173	.000000

That is, our next trial solution is 492.67 standard and 285.13 deluxe bags. \$7172.81 is an upper bound on the maximum profit!