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For Problems with Continuous
Random Outcomes
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Consider the 2-stage stochastic LP:

( ) ( )Minimize minz cx E q yω ω = +  
subject to

Ax b=
( ) ( ) ( ) ,T x Wy hω ω ω+ =

( )0, 0x y ω≥ ≥
where

x = first-stage decision

and

( )y ω = second-stage decision after random event ω is observed

where ( )y ω must satisfy the second-stage constraints

( ) ( ) ( ) ,T x Wy hω ω ω+ =

( )q ω , ( )T ω &/or ( )h ω being continuous random variables.
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Consider, for example, the case in which only h is random.

A possible computational approach:

discretize the range of each right-hand-side hi(ω)

use Benders’ decomposition (i.e., the “L-shaped Method”)

to solve the approximate problem

If  the number of right-hand-sides (m2) and/or

the number of discrete values approximating each right-hand-

side are large, the number of scenarios is so large as to make this

computationally infeasible.

For example, if there are m2=10 constraints, and only

10 discrete values are used for each right-hand-side,

the number of scenarios is 1010 !
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The Stochastic Decomposition (SD) method of Higle & Sen is

based upon (the uni-cut version of)  Benders' decomposition, but

• uses only a finite sample of the random outcomes

• solves most of the second-stage problems only

approximately

For both these reasons, therefore, it is an approximation scheme.
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Stochastic  Decomposition Algorithm of Higle & Sen

Step 0. a. Determine a lower bound L on the optimal value. 

b. Set iteration counter t=0. 

c. Initialize Λ = ∅ which will store the dual extreme points

that are generated during the computations.

Step 1. Increment the iteration counter t ←t+1.

Solve the current Benders' Master Problem:

Maximize cx θ+
subject to Ax b= ,

,    1,2,...s sx s tθ α β≥ + =
0x ≥

to obtain xt

Step 2. Generate a sample ωt (of size 1).
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Step 3. Solve (optimally) the second-stage subproblem problem

for the current xt and ωt:

Min  q(ω)y(ω)

s.t.   Wy(ω) = h(ω) − T(ω)xt

y(ω) ≥ 0

or its dual LP,

Max λ[h(ω)−T(ω)xt]

s.t. λW ≤ q(ω)

to obtain the dual solution t
tλ , which, if not found previously,

is added to the set Λ .
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Step 4. Using the current xt,

for all previously-generated scenarios ωs, s =1, …t−1,

approximately solve the second stage dual subproblem,

restricting the search to dual extreme points Λ previously

computed:

( ) ( )sh s tMax T x
λ

ω ω λ
∈Λ

 − 
to obtain t

sλ .

Note that this gives an under-estimate of the optimal cost for

this scenario, since the maximization is over a subset of all

dual extreme points!
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Step 5. Generate the new optimality cut, to be added to the

Master Problem:

( ) ( )( )
1

1 t
t s s t t
s t t

s

h T x x
t

θ λ ω ω α β
=

≥ − ≡ +∑
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Step 6. Update each of the old optimality cuts, (s =1,2,…t−1)

by replacing
1 1t t

s sa xθ β− −≥ +

with

( )1 11 1t t
s s

t x L
t t

θ α β− −−≥ + +

and return to Step 1.
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Updating the Optimality Cuts

• The effect of updating the old optimality cuts in step 6 is to

"fade out" the cuts as more information becomes available.

• The lower bound L is often zero, or it may be an estimate of the

expected value with perfect information, computed using a

sample of random outcomes.
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Convergence Properties:

Let { }
1

t

t
x

∞

=
be the sequence of solutions of the Master Problems.

Then there exists a subsequence, { } { }nt tx x⊆ such that

every limit point of { }ntx solves the stochastic

programming problem with probability 1.
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Incumbent Solution

One difficulty in the basic method is that convergence to an

optimum may occur only on a subsequence.   For this reason,

Higle & Sen suggest retaining an incumbent solution. 

This incumbent solution is updated whenever there is a

"sufficient" decrease in cost compared to the current incumbent.

Furthermore, in step 6, no update is performed for the cut

generated in the iteration at which the current incumbent was

found.
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Termination

In practice, the SD algorithm is terminated if

the improvement in the objective is small,

no new dual extreme points are found, and

the incumbent has not changed

for a specified number of iterations,
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EXAMPLE:  Randomly-generated problem

Dimensions: 

• n1 = # first-stage variables = 4

• m1 = # first-stage constraints = 3

• n2 = # second-stage variables = 12 (including 2 "simple

recourse" variables per constraint)

• m2 = # second-stage constraints = 4
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First-stage data: 
A,B= 
¯2  1 8 0 > 14
3 ¯3 9 7 > 32
1  1 1 1 < 16

i   variable  cost 
1  X[1]         5 
2  X[2]         1 
3  X[3]         7 
4  X[4]         2 

Objective:  Minimize 

Second-stage data
(Only the right-hand-side
vector is random!)

Right-hand-sides in second stage = 
i  mean   std dev 
1  ¯13      1.4
2   ¯7      0.6
3   11      0.5
4   24      1.9

Second-stage Costs:
i variable  q
1 Y[1]     10
2 Y[2]     10
3 Y[3]     10
4 Y[4]      7
5 Surplus1 99
6 Surplus2 99
7 Surplus3 99
8 Surplus4 99
9 Short1   99

10 Short2   99
11 Short3   99
12 Short4   99

Technology matrix T
(coefficients of X in 2nd stage) = 
¯4  0 ¯3 ¯1
¯1  5 ¯4 ¯4
2 ¯2  4  0
4 ¯1  5  1

Technology matrix W
(coefficients of Y in 2nd stage) = 

1 ¯1 ¯2  5 1 0 0 0 ¯1  0  0  0
0 ¯3  5 ¯1 0 1 0 0  0 ¯1  0  0

¯1  0  2  2 0 0 1 0  0  0 ¯1  0
1  2  1  2 0 0 0 1  0  0  0 ¯1
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Solving the Certainty-Equivalent Problem

Found by solving certainty equivalent problem,
i.e., replacing all random parameters by their expected values.

Total objective function: 46.1403
Stage One: nonzero variables: 

i   variable  value 
1  X[1]      2.85221 
2  X[2]      2.93628 
3  X[3]      2.09602 
4  X[4]      2.26327 
6  surplus_2 2.45487 
7  slack_3   5.85221 

Second Stage: nonzero variables
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

i   variable   value 
4  Y[4]     1.39204 
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Stochastic Decomposition Algorithm

Iteration #1
Trial X for primal subproblems (#1) is

i   Variable     Value   
1   X[1]       2.85221 (found by solving problem
2   X[2]       2.93628 with expected values of
3   X[3]       2.09602 right-hand-sides)
4   X[4]       2.26327 

Solve subproblem with new trial x (#1) :
Primal Subproblem Result: nonzero elements of X (#1): 

i   X[i] 
1 2.85221
2 2.93628
3 2.09602
4 2.26327

RHS = ¯12.4758 ¯8.23344 10.544 24.9054      (first scenario)

Second-stage cost: 78.4487
Optimal dual vector: 48.2273 ¯85.4091 ¯60.7727 ¯99
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Newly-generated optimality cut at iteration 1

s i   beta     x[1]   x[2]   x[3]    x[4]  
1 1 ¯3004.89 625.045 206.5 541.136 ¯194.409

s is scenario #, i is dual solution #, beta is constant

Aggregate cut: 
beta     X[1]   X[2]   X[3]    X[4]  

¯3004.89 625.045 206.5 541.136 ¯194.409

Primal subproblems summary
First stage cost: 36.396
Second stage costs:

s  Lambda#    cost   
1        1  78.4487 

Average second stage cost: 78.4487
Total: 114.845
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Solution of Master Problem

X= 2.85221 2.93628 2.09602 2.26327

First-stage cost= 40.75
Estimated second-stage cost Q(X) = ¯4828.23
Total (estimated) expected value: ¯4787.48
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Iteration #2
Trial X for primal subproblems (#2) is

i   Variable   Value   
1   X[1]        0.00 (found by previous
2   X[2]        0.00 master problem)
3   X[3]        1.75 
4   X[4]       14.25 

Solve subproblem with new trial x (#2) :
Primal Subproblem Result:

RHS = ¯15.0969 ¯6.55505 11.2261 21.3609 (second scenario)

Second-stage cost: 4060.6
Optimal dual vector: 69.7714 65.4 ¯39.2286 ¯99

Solve subproblem with incumbent solution (#1) :
Primal Subproblem Result:

i   X[i] 
1 2.85221
2 2.93628
3 2.09602
4 2.26327

RHS = ¯15.0969 ¯6.55505 11.2261 21.3609
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Second-stage cost: 289.983
Optimal dual vector: ¯2.34783 ¯18.7391 99 ¯99

Newly-generated optimality cut at iteration 2
s i    beta    x[1]    x[2]  3]   x[4] 
1 2 ¯1238.2   169.87 192.696 17 21.6957
2 2  ¯845.065 169.87 192.696 17 21.6957

s is scenario #, i is dual solution #, beta is constant

Aggregate cut: 
beta    X[1]    X[2]  3]   X[4] 

¯1041.63 169.87 192.696 17 21.6957

Primal subproblems summary
First stage cost: 40.75
Second stage costs:

s  Lambda#     cost  
1        2  ¯899.283
2        2   289.983 

Average second stage cost: ¯304.65
Total: ¯263.9
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Solution of Master Problem

X= 0 0 1.75 14.25
First-stage cost: 24.8889
Estimated second-stage cost Q(X) = ¯981.186
Total (estimated) expected value: ¯956.298
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Iteration #3

Trial X for primal subproblems (#3) is
i   Variable     Value 
3   X[3]       3.55556   (found by Master Problem)

Solve subproblem with new trial x (#3) :
Primal Subproblem Result: 

RHS = ¯11.7763 ¯6.8984 11.2903 25.526  (third scenario)

Second-stage cost: 376.236
Optimal dual vector: ¯76.2917 13.625 ¯99 ¯12.7083

Solve subproblem with incumbent solution (#2) :
Primal Subproblem Result:

nonzero elements of X (#2): 
i  X[i]
3  1.75
4 14.25

RHS = ¯11.7763 ¯6.8984 11.2903 25.526
Second-stage cost: 3854.96
Optimal dual vector: 69.7714 65.4 ¯39.2286 ¯99
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Newly-generated optimality cut at iteration 3
s i   beta     x[1]    x[2]     x[3] x[4] 
1 3 ¯4288.18 818.943 ¯504.457 1122.83 430.371
2 3 ¯4037.14 818.943 ¯504.457 1122.83 430.371
3 3 ¯4242.78 818.943 ¯504.457 1122.83 430.371

s is scenario #, i is dual solution #, beta is constant

Aggregate cut: 
beta     X[1]    X[2]  X[3]    X[4] 

¯4189.37 818.943 ¯504.457 1122.83 430.371

Primal subproblems summary
First stage cost: 24.8889
Second stage costs:

s  Lambda#      cost  
1        3   ¯44.8642 
2        3  ¯295.9024 
3        3  3854.9594 

Average second stage cost: 1171.4
Total: 1196.29

That is, the 3rd dual solution in the list was optimal for all three scenarios.
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Solution of Master Problem

X= 0 0 3.55556 0
First-stage cost: 18.906
Estimated second-stage cost Q(X) = ¯966.468
Total (estimated) expected value: ¯947.562
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Iteration #4

Trial X for primal subproblems (#4) is
i   Variable     Value 
3   X[3]       2.20457 (found by Master Problem)
4   X[4]       1.73698 

Solve subproblem with new trial x (#4) :
Primal Subproblem Result:

RHS = ¯14.1861 ¯7.00585 10.8897 24.0418  (fourth scenario)

Second-stage cost: 216.109
Optimal dual vector: ¯76.2917 13.625 ¯99 ¯12.7083

Solve subproblem with incumbent solution (#2) :
Primal Subproblem Result:

i  X[i]
3  1.75
4 14.25

RHS = ¯14.1861 ¯7.00585 10.8897 24.0418
Second-stage cost: 3842.45
Optimal dual vector: 69.7714 65.4 ¯39.2286 ¯99
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Newly-generated optimality cut at iteration 4

s i    beta     x[1]    x[2]     x[3]    x[4]  
1 3 ¯4288.18  818.943 ¯504.457 1122.83 430.371 
2 2  ¯845.065 169.87   192.696   17     21.6957
3 3 ¯4242.78  818.943 ¯504.457 1122.83 430.371 
4 3 ¯4255.29  818.943 ¯504.457 1122.83 430.371 

s is scenario #, i is dual solution #, beta is constant

Aggregate cut: 
beta     X[1]    X[2]     X[3]    X[4] 

¯3407.83 656.675 ¯330.169 846.371 328.202

Primal subproblems summary
First stage cost: 18.906
Second stage costs:

s  Lambda#    cost  
1        3  ¯1019.882 
2        2   ¯769.903 
3        3  ¯1065.280 
4        3   3842.451 

Average second stage cost: 246.846
Total: 265.752
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Solution of Master Problem

X= 0 0 2.20457 1.73698
First-stage cost: 17.0044
Estimated second-stage cost Q(X) = ¯944.114
Total (estimated) expected value: ¯927.11
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Output for 200 iterations
Subproblems were solved approximately, except for
most recent x and the incumbent!

Stochastic Decomposition

Randomly-generated SLPwR problem (seed= 17853)
Random number seed used in computation: 17977

Method: Subproblems solved  approximately 
Tolerance for distinguishing first-stage solutions X:  

1.0E¯3  

# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: 399

# first-stage solutions generated: 200
Best solution found is #189 with estimated cost 71.3121
12 second-stage problems were solved using this X

# second-stage dual solutions generated: 6
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Values of first-stage variables (solutions of Master Problem):
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"Lower" and "Upper" Bounds

(found by Master & approximate Subproblems):
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The Incumbent Solution
Evaluation of trial solution # 189
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

i   variable      X[i]  
¯¯   ¯¯¯¯¯¯¯¯      ¯¯¯¯  
1 X[1]       1.21096  
2   X[2]       2.18995  
3   X[3]       3.05608  
4   X[4]       1.06174  

Three different methods are used to estimate the expected cost of
this solution:

Evaluation by: 
• Use cuts                   
• Use recorded dual solutions (i.e., solve subproblems with dual
variables restricted to the identified dual extreme points)

• Use recorded Q values (i.e., use actual optimal subproblem
solutions computed with this first-stage solution)
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----------------------------------------
1.  Using optimality cuts as approximation of expected
second-stage cost.

First stage objective:                     31.76
Expected second stage objective:          39.84
Total:                                     71.60

----------------------------------------
2. Using expected second-stage costs approximated
by restriction to 6 recorded dual solutions.

First stage objective:                     31.76
Expected second stage objective:          39.65
Total:         71.41

----------------------------------------
3. Using 12 evaluations of second-stage costs.

First stage objective:                     31.76
Expected second stage objective:          33.47
Total:               65.23
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Suppose that we had expended the extra effort to solve the

subproblems optimally for every scenario (rather than only the

most recently-generated scenario):

Random number seed used in computation: 19138
Method: Subproblems solved  exactly 

Tolerance for distinguishing first-stage solutions X:   1.0E¯3  

# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: 20299

# first-stage solutions generated: 200

Best solution found is #111 with estimated cost 66.6435
200 second-stage problems were solved using this X

# second-stage dual solutions generated: 10

Compared to 6 dual solutions found previously!  But over fifty times
the number of subproblems were solved, a substantial increase in
effort!


