Stochastic Decomposition

For Problems with Continuous Random Outcomes

References

Higle, J. L. and S. Sen (1991). "Stochastic decomposition: An algorithm for two-stage linear programs with recourse." *Mathematics of Operations Research* **16**(3): 650-669.

Higle, J. L. and S. Sen (1996). *Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming.* Dordrecht, Kluwer Academic Publishers.

Consider the 2-stage stochastic LP:

$$Minimize \ z = cx + E \left[\min q(\omega) \ y(\omega)\right]$$

subject to

$$Ax = b$$

$$T(\omega)x + Wy(\omega) = h(\omega),$$

$$x \ge 0, y(\omega) \ge 0$$

where

x = first-stage decision

and

 $y(\omega)$ = second-stage decision *after* random event ω is observed

where $y(\omega)$ must satisfy the *second-stage constraints*

 $T(\omega)x + Wy(\omega) = h(\omega),$

 $q(\omega), T(\omega)$ &/or $h(\omega)$ being continuous random variables.

Stochastic Decomposition	05/08/02	page 1 of 34	Stochastic Decomposition	05/08/02	page 2 of 34

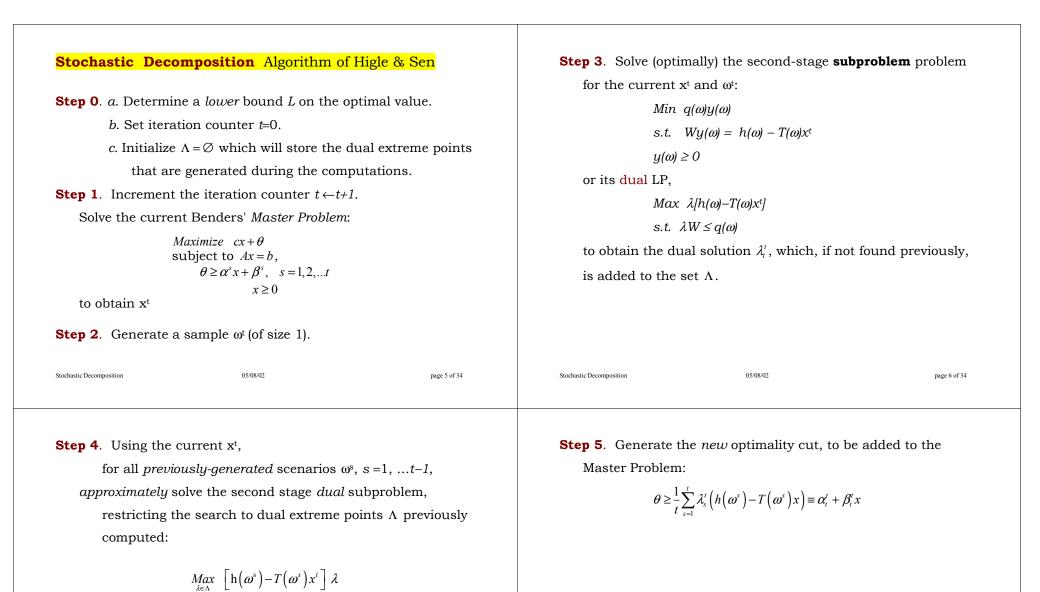
Consider, for example, the case in which only h is random.

A possible computational approach:

- *discretize* the range of each right-hand-side $h_i(\omega)$
- use Benders' decomposition (i.e., the "L-shaped Method") to solve the approximate problem

If the number of right-hand-sides (m_2) and/or

the number of discrete values approximating each right-handside are large, the number of scenarios is so large as to make this computationally infeasible.


```
For example, if there are m_2=10 constraints, and only 10 discrete values are used for each right-hand-side, the number of scenarios is 10^{10} !
```

The **Stochastic Decomposition** (SD) method of Higle & Sen is based upon (the *uni-cut* version of) Benders' decomposition, but

- uses only a *finite sample* of the random outcomes
- solves most of the second-stage problems only *approximately*

For both these reasons, therefore, it is an *approximation* scheme.

05/08/02

to obtain λ_s^t .

Note that this gives an **under**-estimate of the optimal cost for this scenario, since the maximization is over a **subset** of all dual extreme points!

page 7 of 34

05/08/02

Step 6. Update each of the *old* optimality cuts, (s=1,2,...t-1)

by replacing

$$\theta \ge a_s^{t-1} + \beta_s^{t-1} x$$

with

$$\theta \ge \frac{t-1}{t} \left(\alpha_s^{t-1} + \beta_s^{t-1} x \right) + \frac{1}{t} L$$

and return to **Step 1**.

Updating the Optimality Cuts

- The effect of updating the old optimality cuts in step 6 is to "fade out" the cuts as more information becomes available.
- The lower bound *L* is often zero, or it may be an estimate of the expected value with perfect information, computed using a sample of random outcomes.

05/08/02

page 9 of 34

Convergence Properties:

Let $\{x'\}_{t=1}^{\infty}$ be the sequence of solutions of the Master Problems. Then there exists a **subsequence**, $\{x'_n\} \subseteq \{x'\}$ such that every limit point of $\{x'_n\}$ solves the stochastic programming problem with probability 1.

Incumbent Solution

Stochastic Decomposition

One difficulty in the basic method is that convergence to an optimum may occur only on a *subsequence*. For this reason, Higle & Sen suggest retaining an *incumbent* solution.

05/08/02

This incumbent solution is updated whenever there is a "sufficient" decrease in cost compared to the current incumbent.

Furthermore, in **step 6**, no update is performed for the cut generated in the iteration at which the current incumbent was found.

page 10 of 34

Termination

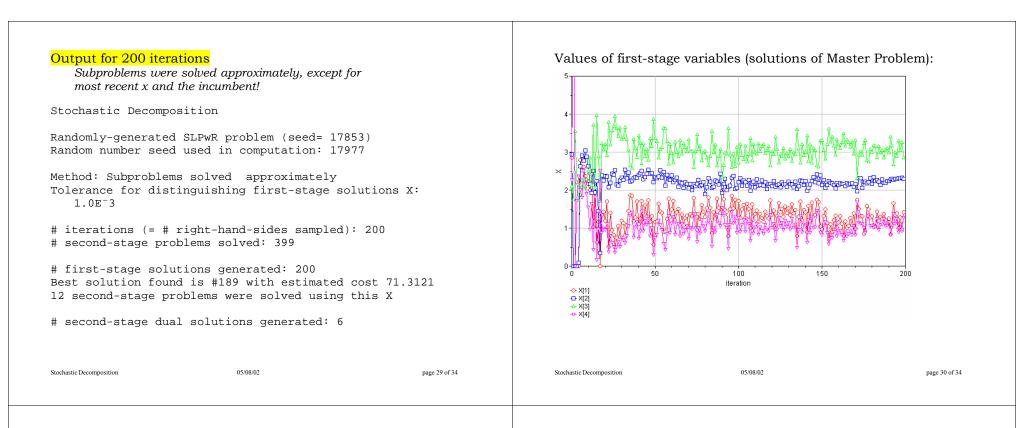
In practice, the SD algorithm is terminated if

- the improvement in the objective is small,
- no new dual extreme points are found, and
- the incumbent has not changed

for a specified number of iterations,

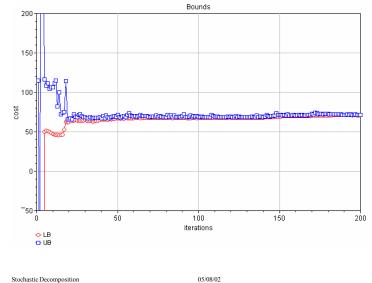
EXAMPLE: Randomly-generated problem

Dimensions:


- n₁ = # first-stage variables = 4
- $m_1 = #$ first-stage constraints = 3
- n₂ = # second-stage variables = 12 (including 2 "simple recourse" variables per constraint)
- m₂ = # second-stage constraints = 4

Stochastic Decomposition	05/08/02	page 13 of 34	Stochastic Decomposition	05/08/02	page 14 of 34
First-stage data: A,B= $^{-2}$ 1 8 0 > 14 3 $^{-3}$ 9 7 > 32 1 1 1 1 < 16 <u>i variable cost</u> 1 X[1] 5 2 X[2] 1 3 X[3] 7 4 X[4] 2 Objective: Minimize Second-stage data (Only the right-hand-side vector is random!) Right-hand-sides in second st <u>i mean std dev</u> 1 $^{-13}$ 1.4 2 $^{-7}$ 0.6 3 11 0.5 4 24 1.9	2 Y[2] 3 Y[3] 4 Y[4] 5 Surplus1 6 Surplus2 7 Surplus3 8 Surplus4 9 Short1 10 Short2 11 Short3 12 Short4 Technology m (coefficient 2 '2 4 0 4 '1 5 1 Technology m (coefficient 1 '1 2 5 0 '3 5 '1 -1 0 2 2	<u>q</u> 10 10 7 99 99 99 99 99 99 99 atrix T s of X in 2nd stage) = 1 0 0 0 ⁻¹ 0 0 0 1 0 0 0 ⁻¹ 0 0 0 1 0 0 0 ⁻¹ 0	Found by solving centrice., replacing all Total objective function Stage One: nonzero with the second stage i variabling (2) 1 x[1] 2 x[2] 3 x[3] 4 x[4]	variables: <u>e value</u> 2.85221 2.93628 2.09602 2.26327 _2 2.45487 5.85221 ro variables	expected values.
Stochastic Decomposition	05/08/02	0 0 0 1 0 0 0 ⁻ 1	Stochastic Decomposition	05/08/02	page 16 of 34

	Iteration #1		si beta			
Trial X for primal subproblems (#1) is			1 1 -3004.89 625.045 206.5 541.136 -194.409			
i Variable	Value (C. 11		s is scenario #, i is	dual solution #, beta is c	onstant	
		lving problem				
		ted values of	Aggregate cut:			
	2.09602 <i>right-hand-s</i>	siaes)		[1] X[2] X[3] X[4]		
4 X[4]	2.26327			.045 206.5 541.136 -194.409		
Solve subproblem with r	new trial x (#1) :					
	Lt: nonzero elements of X	(#1):				
i X[i]			Primal subproblems sur			
1 2.85221			First stage cost Second stage cos			
2 2.93628			second stage cos			
3 2.09602				<u>s Lambda# cost</u> 1 1 78.4487	,	
4 2.26327				· · · /0.440/		
RHS = ⁻ 12.4758 ⁻ 8.23344	4 10.544 24.9054 (fire	st scenario)	Average second stage	cost: 78.4487		
			Total: 114.845			
Second-stage cost: 78.4						
primar quar vector: 48	3.2273 -85.4091 -60.7727 -	<i>77</i>				
tochastic Decomposition	05/08/02	page 17 of 34	Stochastic Decomposition	05/08/02	page 18 of 34	
-			-			
Solution of Master Drok	blem					
X= 2.85221 2.93628 First-stag Estimated second-s	 3 2.09602 2.26327 e cost= 40.75 stage cost Q(X) = ⁻ 4828.23	3	Trial X for primal sul <u>i Variable</u> 1 X[1] 2 X[2] 3 X[3]	Value0.00(found by pre0.00master probl		
X= 2.85221 2.93628 First-stag Estimated second-s	e cost= 40.75	3	<u>i Variable</u> 1 X[1]	bproblems (#2) is <u>Value</u> 0.00 <i>(found by pre</i>		
X= 2.85221 2.93628 First-stag Estimated second-s	 3 2.09602 2.26327 e cost= 40.75 stage cost Q(X) = ⁻ 4828.23	3	<u>i Variable</u> 1 X[1] 2 X[2] 3 X[3]	bproblems (#2) is Value 0.00 (found by pre 0.00 master probl 1.75 14.25 new trial x (#2) : *		
X= 2.85221 2.93628 First-stag Estimated second-s	 3 2.09602 2.26327 e cost= 40.75 stage cost Q(X) = ⁻ 4828.23	3	i Variable 1 X[1] 2 X[2] 3 X[3] 4 X[4] Solve subproblem with Primal Subproblem	bproblems (#2) is Value 0.00 (found by pre 0.00 master probl 1.75 14.25 new trial x (#2) : *	em)	
First-stag Estimated second-s	 3 2.09602 2.26327 e cost= 40.75 stage cost Q(X) = ⁻ 4828.23	3	i Variable 1 X[1] 2 X[2] 3 X[3] 4 X[4] Solve subproblem with Primal Subproblem RHS = -15.0969 -6. Second-stage cost	bproblems (#2) is <u>Value</u> 0.00 (found by pre 0.00 master probl 1.75 14.25 new trial x (#2) : Result: .55505 11.2261 21.3609 (sec	em) rond scenario)	
X= 2.85221 2.93628 First-stag Estimated second-s	 3 2.09602 2.26327 e cost= 40.75 stage cost Q(X) = ⁻ 4828.23	3	i Variable 1 X[1] 2 X[2] 3 X[3] 4 X[4] Solve subproblem with Primal Subproblem RHS = -15.0969 -6. Second-stage cost Optimal dual vector Solve subproblem with Primal Subproblem i X[i]	bproblems (#2) is <u>Value</u> 0.00 (found by pre 0.00 master probl 1.75 14.25 new trial x (#2) : Result: .55505 11.2261 21.3609 (sec : 4060.6 pr: 69.7714 65.4 -39.2286 - incumbent solution (#1) :	em) rond scenario)	
X= 2.85221 2.93628 First-stag Estimated second-s	 3 2.09602 2.26327 e cost= 40.75 stage cost Q(X) = ⁻ 4828.23	3	$\frac{i Variable}{1 X[1]}$ $2 X[2]$ $3 X[3]$ $4 X[4]$ Solve subproblem with Primal Subproblem RHS = -15.0969 -6. Second-stage cost: Optimal dual vector Solve subproblem with Primal Subproblem $\frac{i X[i]}{1 2.85221}$ $2 2.93628$	bproblems (#2) is <u>Value</u> 0.00 (found by pre 0.00 master probl 1.75 14.25 new trial x (#2) : Result: .55505 11.2261 21.3609 (sec : 4060.6 pr: 69.7714 65.4 -39.2286 - incumbent solution (#1) :	em) rond scenario)	
X= 2.85221 2.93628 First-stag Estimated second-s	 3 2.09602 2.26327 e cost= 40.75 stage cost Q(X) = ⁻ 4828.23	3	$\frac{i Variable}{1 X[1]}$ $2 X[2]$ $3 X[3]$ $4 X[4]$ Solve subproblem with Primal Subproblem RHS = -15.0969 -6. Second-stage cost Optimal dual vector Solve subproblem with Primal Subproblem $\frac{i X[i]}{1 2.85221}$ $2 2.93628$ $3 2.09602$	bproblems (#2) is <u>Value</u> 0.00 (found by pre 0.00 master probl 1.75 14.25 new trial x (#2) : Result: .55505 11.2261 21.3609 (sec : 4060.6 pr: 69.7714 65.4 -39.2286 - incumbent solution (#1) :	em) rond scenario)	
X= 2.85221 2.93628 First-stag Estimated second-s	 3 2.09602 2.26327 e cost= 40.75 stage cost Q(X) = ⁻ 4828.23	3	$\frac{i Variable}{1 x[1]}$ $2 x[2]$ $3 x[3]$ $4 x[4]$ Solve subproblem with Primal Subproblem RHS = -15.0969 -6. Second-stage cost Optimal dual vector Solve subproblem with Primal Subproblem $\frac{i x[i]}{1 2.85221}$ $2 2.93628$ $3 2.09602$ $4 2.26327$	bproblems (#2) is <u>Value</u> 0.00 (found by pre 0.00 master probl 1.75 14.25 new trial x (#2) : Result: .55505 11.2261 21.3609 (sec : 4060.6 pr: 69.7714 65.4 -39.2286 - incumbent solution (#1) :	em) rond scenario)	


Second-stage cost: 289.983 Optimal dual vector: $-2.34783 - 18.7391 99 - 99$ Newly-generated optimality cut at iteration 2 $\frac{s \ i \ beta \ x[1] \ x[2] \ 3] \ x[4]}{1 \ 2 \ -1238.2 \ 169.87 \ 192.696 \ 17 \ 21.6957}$ 2 2 $-845.065 \ 169.87 \ 192.696 \ 17 \ 21.6957$ s is scenario #, i is dual solution #, beta is constant Aggregate cut: $\frac{beta \ x[1] \ x[2] \ 3] \ x[4]}{-1041.63 \ 169.87 \ 192.696 \ 17 \ 21.6957}$ Primal subproblems summary First stage cost: 40.75		Solution of Master X= 0 0 1.75 14 First-stage co Estimated seco Total (estimat	. 25	86 8
Second stage costs: <u>s Lambda# cost</u> <u>1</u> 2 -899.283 2 2 289.983 Average second stage cost: -304.65 Total: -263.9 Stochastic Decomposition 0508/02	page 21 of 34	Stochastic Decomposition	05/08/02	page 22 of 34
Iteration #3Trial X for primal subproblems (#3) isi Variable Value3 X[3]3.55556 (found by Master Problem)		<u>s i beta</u> 1 3 ⁻ 4288. 2 3 ⁻ 4037. 3 3 ⁻ 4242.	fimality cut at iteration 3 x[1] $x[2]$ $x[3]18 818.943 ^{-}504.457 1122.8314 818.943 ^{-}504.457 1122.8378 818.943 ^{-}504.457 1122.83is dual solution #, beta is$	430.371 430.371
Solve subproblem with new trial x (#3) : Primal Subproblem Result: RHS = -11.7763 -6.8984 11.2903 25.526 (third scenario) Second-stage cost: 376.236 Optimal dual vector: -76.2917 13.625 -99 -12.7083 Solve subproblem with incumbent solution (#2) : Primal Subproblem Result: nonzero elements of X (#2): $\frac{i X[i]}{3 1.75}$ 4 14.25 RHS = -11.7763 -6.8984 11.2903 25.526 Second-stage cost: 3854.96 Optimal dual vector: 69.7714 65.4 -39.2286 -99)	Primal subproblems First stage co Second stage co 1 2 3 Average second Total: 1196.29	st: 24.8889 osts:	.371
Stochastic Decomposition 05/08/02	page 23 of 34	Stochastic Decomposition	05/08/02	page 24 of 34

Solution of Master Problem			It	eration #4	
X= 0 0 3.55556 0 First-stage cost: 18.906 Estimated second-stage cost Q(X) = ⁻ 966.468 Total (estimated) expected value: ⁻ 947.562		Trial X for prim <u>i Variable</u> 3 X[3] 4 X[4]		(#4) is (found by Master	Problem)
		Solve subproblem with Primal Subproblem Res		#4) :	
		RHS = -14.1861 -	-7.00585 10.889	7 24.0418 <i>(fourth</i>	scenario)
		Second-stage cos Optimal dual vec		13.625 ⁻ 99 ⁻ 12.708	33
		Solve subproblem with Primal Subproblem Res <u>i X[i]</u> 3 1.75 4 14.25		ution (#2) :	
		RHS = ⁻ 14.1861 ⁻ Second-stage cos Optimal dual vec	st: 3842.45	7 24.0418 5.4 ⁻ 39.2286 ⁻ 99	
Stochastic Decomposition 05/08/02	page 25 of 34	Stochastic Decomposition	05/08/02		page 26 of 34
Newly-generated optimality cut at iteration 4 $\frac{s i beta x[1] x[2] x[3] x[4]}{1 3 -4288.18 818.943 -504.457 1122.83 430.371}$ 2 2 -845.065 169.87 192.696 17 21.6957 3 3 -4242.78 818.943 -504.457 1122.83 430.371 4 3 -4255.29 818.943 -504.457 1122.83 430.371 s is scenario #, i is dual solution #, beta is constant		Solution of Master Pr X= 0 0 2.20457 1 First-stage cost Estimated second Total (estimated	1.73698 t: 17.0044 d-stage cost Q(
Aggregate cut: <u>beta X[1] X[2] X[3] X[4]</u> -3407.83 656.675 -330.169 846.371 328.202					
Primal subproblems summary First stage cost: 18.906 Second stage costs: s Lambda# 1 3 2 2 3 3 1019.882 2 2 3 3 1065.280 4 3 3842.451 Average second stage cost: 246.846					
Total: 265.752					

"Lower" and "Upper" Bounds

(found by Master & approximate Subproblems):

The Incumbent Solution

Evaluation of trial solution # 189

	variable	X[i]
1	X[1]	1.21096
2	X[2]	2.18995
3	X[3]	3.05608
4	X[4]	1.06174

Three different methods are used to estimate the expected cost of this solution:

Evaluation by:

• Use cuts

- Use recorded dual solutions (i.e., solve subproblems with dual variables restricted to the identified dual extreme points)
- Use recorded Q values (i.e., use actual optimal subproblem solutions computed with this first-stage solution)

page 31 of 34

Stochastic Decomposition

05/08/02

page 32 of 34

1. Using optimality cuts as approximati second-stage cost.	on of expected		ad expended the extra effort to s ally for every scenario (rather th	
First stage objective: Expected second stage objective: Total:	31.76 39.84 71.60	most recently-generation Random number seed u Method: Subproblems	, used in computation: 19138	
2. Using expected second-stage costs app by restriction to 6 recorded dual solut		Tolerance for distin	guishing first-stage solutions	X: 1.0E ⁻ 3
First stage objective: Expected second stage objective:	31.76 39.65	<pre># iterations (= # ri # second-stage probl</pre>	ght-hand-sides sampled): 200 ems solved: 20299	
Total:	71.41	<pre># first-stage soluti Best solution found</pre>	ons generated: 200 is #111 with estimated cost 66	.6435
3. Using 12 evaluations of second-stage	costs.		blems were solved using this X	
First stage objective:	31.76	# second-stage dua	al solutions generated: 10	
Expected second stage objective: Total:	33.47 65.23		al solutions found previously! But pproblems were solved, a substant	
Stochastic Decomposition 05/08/02	page 33 of 34	Stochastic Decomposition	05/08/02	page 34 of