Solving Linear

 Equations
IElementary DRow Operations

- Multiply any row of the matrix by a (positive or negative) scalar
- Add to any row a scalar multiple of another row
- Interchange two rows of the matrix

Strictly" speaking, the third is not "elementary", because it can be accomplished by a sequence of the other two row operations!)
© Dennis L. Bricker
Dept of Mechanical \& Industrial Engineering
University of Iowa

Contents

- Preliminaries
- Elementary Matrix Operations
- Elementary Matrices
- Echelon Matrices
- Rank of Matrices
- Elimination Methods
- Gauss Elimination
- Gauss-Jordan Elimination
- Factorization Methods
- Product Form of Inverse (PFI)
- LU Factorization
- LDL ${ }^{\text {T }}$ Factorization
- Cholesky LL ${ }^{\text {T }}$ Factorization

Solving Linear Eqns

Elementary Column Dperations

- Multiply any column by a (positive or negative) scalar
- Add to any column a scalar multiple of another column
- Interchange two columns of the matrix

IEquivalence
 of Matrices

Matrix A is equivalent to matrix $\mathrm{B}(\mathrm{A} \sim \mathrm{B})$
if B is the result of a sequence of elementary
row \&/or column operations on \mathbf{A}.
If only row operations are used, then \mathbf{A} is row-equivalent to B
If only column operations are used, then \mathbf{A} is column-equivalent to B

IEhelon Matrix

--an mxn matrix with the properties

- each of the first $k(0 \leq k \leq m)$ rows has some nonzero entries, and the remaining $m-k$ rows consist only of zeroes
- the first nonzero entry in each of the first k rows is a "1"
- in each of the first k rows, the number of zeroes preceding the leading " 1 " is smaller than it is in the next row

ECHELON MATRIX

$\left.\left[\begin{array}{ccccccc}1 & 5 & 0 & 3 & -1 & 2 & 8 \\ 0 & 0 & 1 & -1 & 2 & 5 & 0 \\ 0 & 0 & 0 & 1 & 3 & 1 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\right\} k=3=$ rank

Note. every matrix is row-equivalent to some echelon matrix.

Theorem

If A is equivalent to B, then the rank of A equals the rank of B.
R.4NK: size of the largest (square) nonsingular submatrix

Elementary Matrices

An elementary matrix E is the result of performing an elementary operation on an identity matrix.
Example

Elementary row
operation. add -2 times
first row to thirdrow

0 \& 1 \& 0

0 \& 0 \& 1\end{array}\right] \sim\left[$$
\begin{array}{ccc}1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1\end{array}
$$\right]\)

Multiplication by an pre-multiplication Elementary Matrix
 by elementary matrix

If E is an $m \times m$ elementary matrix and A is an man matrix, then EA equals the result of performing the same elementary row operation on matrix A.
$\left.\begin{array}{l}\text { Example: } \\ \begin{array}{l}\text { add-2 times } \\ \text { first row to } \\ \text { thirdrow }\end{array}\end{array}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}2 & -1 & 0 & 4 \\ 5 & 1 & 3 & -1 \\ 4 & 3 & 1 & 2\end{array}\right]=\left[\begin{array}{cccc}2 & -1 & 0 & 4 \\ 5 & 1 & 3 & -1 \\ 0 & 5 & 1 & -6\end{array}\right], ~\right] ~$

Calculation of Matrix Inverse

Example:

$$
\begin{aligned}
& {\left[\begin{array} { c c c }
{ 1 } & { 2 } & { 1 } \\
{ - 1 } & { - 1 } & { 1 } \\
{ 0 } & { 1 } & { 3 }
\end{array} [\begin{array} { l l l }
{ 1 } & { 0 } & { 0 } \\
{ 0 } & { 1 } & { 0 } \\
{ 0 } & { 0 } & { 1 }
\end{array}] \sim \left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\left[\begin{array}{ccc}
-4 & -5 & 3 \\
3 & 3 & -2 \\
-1 & -1 & 1
\end{array}\right]\right.\right.} \\
& \text { and } 50
\end{aligned}
$$

Pivot

Pivot Pivot operation on row r, column s i.e., element A_{r}^{s} of $m \times n$ matrix A :

A sequence of elementary row operations:

- For $\mathrm{i}=1,2, \ldots \mathrm{~m}$ but $\mathrm{i} \neq \mathrm{r}$:

$$
\text { add }-A_{i}^{s} / A_{r}^{s} \text { times row } r \text { to row } i
$$

- Multiply row r by the scalar $1 / \mathrm{A}_{\mathrm{r}}^{s}$

Effect: column s will consist of ceroes, with the exception of a "7" in rowr.
Warning: this is not the only sequence of elementary row operations having this effect!
$\left.\begin{array}{|l|l|lllll|}\hline \text { Pivot Matrix } \\ \begin{array}{l}\text { Differs from } \\ \text { the mxm identity } \\ \text { matrix only in } \\ \text { column } r\end{array} \\ 0 & 1 & \cdots & -\frac{A_{2}^{s}}{A_{r}^{s}} & \cdots & 0 & 0 \\ 1 & 0 & \cdots & -\frac{A_{1}^{s}}{A_{r}^{s}} & \cdots & 0 & 0 \\ 0 & 0 & \cdots & \frac{1}{A_{r}^{s}} & \cdots & 0 & 0 \\ 0 & 0 & \cdots & -\frac{A_{m}^{s}-1}{A_{r}^{s}} & \cdots & 1 & 0 \\ 0 & 0 & \cdots & -\frac{A_{m}^{s}}{A_{r}^{s}} & \cdots & 0 & 1\end{array}\right]$

Pivot Matrix

To store a pivot matrix, we need not store the entire matrix, but only

- the number (r) of the pivot row
- column \#r of the pivot matrix (the eta vector)

$$
\eta=\left[-\frac{A_{1}^{s}}{A_{r}^{s}},-\frac{A_{2}^{s}}{A_{r}^{s}}, \ldots \frac{1}{A_{r}^{s}}, \ldots-\frac{A_{m}^{s}}{A_{r}^{s}}\right]
$$

This is sufficient information to reconstruct the pivot matrix.

Product IForm of the Inverse

If matrix A is nonsingular, then a sequence of pivots down the diagonal of A (with possible row interchanges to avoid zero pivot elements) will reduce A to the identity matrix. This is equivalent to pre-multiplying A by a sequence of pivot matrices:

$$
\begin{aligned}
& \left.\left(\mathrm{P}_{\mathrm{m}} \cdots\left(\mathrm{P}_{3}\left(\mathrm{P}_{2}\left(\mathrm{P}_{1} A\right)\right)\right) \cdots\right)=\mathrm{I}\right) \\
& \Rightarrow \quad\left(\mathrm{P}_{\mathrm{m}} \cdots \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}\right) \mathrm{A}=\mathrm{I} \\
& \Rightarrow \quad \mathrm{~A}^{-1}=\mathrm{P}_{\mathrm{m}} \cdots \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}
\end{aligned}
$$

Product Form of the llnverse

In the Revised Simplex Method, computation of values in the tableau is done, not by pivoting in the tableau, but by either pre-multiplication or post-multiplication by the inverse matrix:

- Computation of simplex multipliers usedin

$$
\pi=\mathrm{c}^{\mathrm{B}}\left(\mathrm{~A}^{\mathrm{B}}\right)^{-1} \begin{array}{ll}
\text { select } \\
\text { piot }
\end{array}
$$

- Computation of substitution rates

$$
\alpha=\left(\mathrm{A}^{\mathrm{B}}\right)^{-1} \mathrm{~A}^{\mathrm{s}} \begin{array}{ll}
& \begin{array}{l}
\text { usedin } \\
\text { Qerformin } \\
\text { ope pivot }
\end{array}
\end{array}
$$

Computing
Simplex Multipliers

Solve $\pi A^{B}=c^{B}$ for π :
$\pi=c^{B}\left(A^{B}\right)^{-1}$
$=\mathrm{c}^{\mathrm{B}}\left(\mathrm{P}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}-1} \cdots \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}\right)$

$$
=\left(\left(\left(\cdots\left(\mathrm{c}^{\mathrm{B}} \mathrm{P}_{\mathrm{k}}\right) \mathrm{P}_{\mathrm{k}-1} \cdots \mathrm{P}_{3}\right) \mathrm{P}_{2}\right) \mathrm{P}_{1}\right)
$$

"Backward Transformation", or BTRAN
The pivot matrices are processed in the reverse of the order in which they were generated,
i.e., $P_{k} P_{k-1} \ldots P_{3} P_{2} P_{1}$

For each pivot matrix P,
we need to calculate $\pi=\nu P$
BTRAN

$$
\begin{aligned}
& \pi=\left[\begin{array}{llllll}
v_{1} & v_{2} & \cdots & v_{m}-1 & v_{m}
\end{array}\right]\left[\begin{array}{ccccccc}
1 & 0 & \cdots & \eta_{1} & \cdots & 0 & 0 \\
0 & 1 & \cdots & \eta_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & \eta_{\mathrm{r}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & \eta_{m-1} & \cdots & 1 & 0 \\
0 & 0 & \cdots & \eta_{m} & \cdots & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
v_{1} & v_{2} & \cdots & \left(\sum_{i} v_{i} \eta_{i}\right) & \cdots & v_{m-1} & v_{m}
\end{array}\right] \\
& \text { entry ros }
\end{aligned}
$$

BTRAN

$$
\boldsymbol{\pi}_{\mathrm{j}}=\left\{\begin{array}{cc}
v_{j} & \text { for } \mathrm{j} \neq \mathrm{r} \\
\sum_{\mathrm{i}} v_{i} \eta_{\mathrm{i}} & \text { for } \mathrm{j}=\mathrm{r}
\end{array}\right.
$$

Step 0: Set $v=c^{B}$ and $k=\#$ of ETA vectors
Step 1: Using BTRAN formula above, compute with ETA vector \#k
Step 2: If $k>1$, let $v=\pi$ and $k=k-1$, and go to step 1 ; else proceed to step 3 .
Step 3: The final value of π is the solution of $\pi A^{B}=c^{B}$

FTRAN Solve $A^{B} \alpha=A^{3}$ for substitution rates α

$$
\begin{aligned}
\alpha & =\left(A^{B^{1}}\right)^{-1} A^{s} \\
& =\left(P_{k} P_{k-1} \cdots P_{3} P_{2} P_{1}\right) A^{s} \\
& =\left(P_{k}\left(P_{k-1} \cdots P_{3}\left(P_{2}\left(P_{1} A^{s}\right)\right) \cdots\right)\right)
\end{aligned}
$$

"Forward Transformation", or FTRAN

The pivot matrices are processed in the same order that they were generated,
i.e., $P_{1}, P_{2}, P_{3}, \cdots \quad P_{k-1}, P_{k}$

FTRAN
column r ?
$\alpha=\left[\begin{array}{ccccccc}1 & 0 & \cdots & \eta_{1} & \cdots & 0 & 0 \\ 0 & 1 & \cdots & \eta_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \eta_{\mathrm{r}} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \eta_{\mathrm{m}-1} & \cdots & 1 & 0 \\ 0 & 0 & \cdots & \eta_{\mathrm{m}} & \cdots & 0 & 1\end{array}\right]\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{\mathrm{m}}\end{array}\right]=\left[\begin{array}{c}v_{1}+\eta_{1} v_{\mathrm{r}} \\ v_{2}+\eta_{2} v_{\mathrm{r}} \\ \vdots \\ \eta_{\mathrm{r}} v_{\mathrm{r}} \\ v_{\mathrm{m}}+\eta_{\mathrm{m}} v_{\mathrm{r}}\end{array}\right]$
That is, $\quad \alpha_{i}= \begin{cases}v_{i}+\eta_{i} v_{r} & \text { for } i \neq r \\ \eta_{r} v_{r} & \text { for } i=r\end{cases}$

$$
\alpha_{i}= \begin{cases}v_{\mathrm{i}}+\eta_{\mathrm{i}} v_{\mathrm{r}} & \text { for } \mathrm{i} \neq \mathrm{r} \\ \eta_{\mathrm{r}} v_{\mathrm{r}} & \text { for } \mathrm{i}=\mathrm{r}\end{cases}
$$

Step 0: Set $v=A^{s}$ (e.g., column of original tableau), and $k=1$.
Step 1: Using the FTRAN formula above, compute α
Step 2: If $k<\#$ of ETA vectors, then let $v=\alpha$ and $k=k+1$, and go to step 1 ; else proceed to step 3 .
Step 3: The final value of v is the solution α of the equation $\quad A^{B} \alpha=A^{3}$
FTRAN

Gauss Elimination

-- a method for solving $A x=b$ by performing a sequence of elementary row operations on the augmented matrix $A \mid b$ to reduce it to an echelon matrix. The solution is then obtained by "back-substitution".

Iving Linear Eqns
8/26/2003
page 2

Example: $\left\{\begin{array}{r}x_{1}+x_{2}+x_{3}=4 \\ x_{1}+2 x_{2}+2 x_{3}=2 \\ -x_{1}-x_{2}+x_{3}=2\end{array}\right.$
$\left[\begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 1 & 2 & 2 & 2 \\ -1 & -1 & 1 & 2\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 3\end{array}\right] \Rightarrow\left\{\begin{array}{r}x_{1}+x_{2}+x_{3}=4 \\ x_{2}+x_{3}=-2 \\ x_{3}=3\end{array}\right.$
Backsubstitution:

$$
\left.\left\{\begin{aligned}
x_{1} & =4-x_{2}-x_{3} \\
x_{2} & =-2-x_{3} \\
& x_{3}
\end{aligned}\right\} \Rightarrow x_{2}=-5\right\} \Rightarrow x_{1}=6
$$

Gauss-Jordan Elimination

--similar to Gauss elimination, except that the coefficient matrix is diagonalized by further elementary row operations, eliminating nonzeroes above as well as below the diagonal. Eliminates the need for "back-substitution".
$\left[\begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 1 & 2 & 2 & 2 \\ -1 & -1 & 1 & 2\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 3\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 3\end{array}\right]$

That is, $\quad\left\{\begin{array}{l}x_{1}=6 \\ x_{2}=-5 \\ x_{3}=3\end{array}\right.$

$$
\begin{aligned}
& \mathrm{E}_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathrm{E}_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \xrightarrow{\substack{\text { Lonter } \\
\text { ingnguar } \\
\text { matroes }}}
\end{aligned}
$$

Suppose that we need to solve

$$
\left.\begin{array}{c}
\left\{\begin{array}{r}
\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=2 \\
-\mathrm{x}_{1} \\
-\mathrm{x}_{2}+\mathrm{x}_{3}=5
\end{array}\right. \\
\\
\\
\mathrm{x}_{2}+3 \mathrm{x}_{3}=-1
\end{array}\right\}
$$

$\underbrace{\mathrm{E}_{2} \mathrm{E}_{1}}_{\hat{\mathrm{L}}} \mathrm{A}=\mathrm{U}$

$$
\hat{\mathrm{L}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right], \hat{\mathrm{L}}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\mathrm{L}
$$

$\hat{\mathrm{L}} \mathrm{A}=\mathrm{U} \Rightarrow \mathrm{A}=\hat{\mathrm{L}}^{-1} \mathrm{U}=\mathrm{L} \mathrm{U}$

Matris sis is
factoreci into an prodiuct of Hower \& upper
 matrices/

To solve $\mathrm{A} x=\mathrm{b}$, i.e., $\mathrm{L}(\mathrm{Ux})=\mathrm{b}$:

- solve Ly=b for y (forward substitution)

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] y=\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
y_{1}=2 \\
y_{2}=5+y_{1}=7 \\
y_{3}=-1-y_{2}=-8
\end{array}\right.
$$

- solve Ux=y for $x \quad$ (backward substitution)

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] x=\left[\begin{array}{c}
2 \\
7 \\
-8
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
x_{1}=2-2 x_{2}-x_{3}=-36 \\
x_{2}=7-2 x_{3}=23 \\
x_{3}=-8
\end{array}\right.
$$

Cholesky Factorization

Suppose that A is a symmetric \& positive definite matrix.
Then the Cholesky factorization of A is

$$
A=\hat{L} \hat{L}^{T}
$$

where \hat{L} is a lower triangular matrix.

Computation:

Suppose that we have the factorization

$$
A=L D L^{T}
$$

Then if $D_{i}^{i} \geq 0$, we can define a new diagonal matrix \hat{D} where

$$
\hat{D}_{i}^{i} \equiv \sqrt{D_{i}^{i}}
$$

Then $A=L D L^{T}=L \hat{D} \hat{D} L^{T}=(L \hat{D})(L \hat{D})^{T}=\hat{L} \hat{L}^{T}$ where $\hat{L}=L \hat{D}$

Example:

We wish to find the Cholesky factorization of the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

The lower triangular matrix L is found by performing (on the identity matrix) the inverse of the row operations used to reduce the A matrix:

$$
\left.\begin{array}{l}
R_{3} \leftarrow R_{3}+1 / 2 R_{1} \\
R_{3} \leftarrow R_{3}+R_{2}
\end{array}\right\} \Rightarrow L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 / 2 & 1 & 1
\end{array}\right]
$$

We now have the LU factorization of matrix A :

$$
A=L U=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 / 2 & 1 & 1
\end{array}\right]\left[\begin{array}{llc}
2 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 / 2
\end{array}\right]
$$

Define the diagonal matrix D :

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 2
\end{array}\right] \Rightarrow D^{-1}=\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Note that

$\hat{U}=D^{-1} U=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{llc}2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 / 2\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Solving Linear Eqns

And so,

$$
A=L D L^{T}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 / 2 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

