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Formulation as a Linear Programming Problem

Dijkstra's Labelling Algorithm

Floyd's Algorithm

Applications

Minimize dy; K+ d K5+ dasRoatdaatogtdsgHsy

subject to [- ¥, - Hiz = -1
+ X, - Hpz - Hag = 0
+ Rz + Mg “Hsy = 0
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X2 0 for each arc (ij)
The algorithm which
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Formmulation of the Shortest-Path Problem
as a linear programming problem:

Example: Find the shortest
path from node 1 to node
4, where distances are as
giver.

Minimum-Cost Network Flow Model:
Let the unit "shipping cost"= dyj for arc {i,j)
source node * 1 supplies | unit
sink node *4 requires | unit

&

Minimize dy; K+ d K5+ dasRoatdaatogtdsgHsy

subject to [- ¥, - Hiz = -1

+ ¥ - X - X =0

+ Rz + Mg “Hsy = 0

+Hpy +Hg, =t

X2 0 for each arc (ij)
Mazimize - v, Ty

subject to -y, + ¥ < dys
-V ¥z ¢ dis
IREARE < das
-V +yy ¢ day
“Vs ¥y ¢ dag

{v; unconstrained in sign)

Dijkstra's Shortest-Path Algorithm E

Assume no negative-length cycles exist in the network.
To find: the shortest path from node s to each of the other nodes
Label each node j with two labels:

d(j) = length of shortest path from node s to node | passing
through permanently-labelled nodes only

p(j) = immediate predecessor to node j in the path from node s.

At any stage of the algorithm, the label of each node is either
temporary or permanent

&
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Dijkstra's Shortest-Path Algorithm E

Step 0: Initially, give node s permanent labels Step 2: Make permanent the label of the node having
d{s) =0 and p(s)=¢& smallest di(j)
and give all other nodes temporary labels
d(j) = +eo and pl(j) =& If some labels are temporary still, return to

step 1; otherwise, stop.

Step 1: Let k = node whose labels were most recently
made permanent.
For every node j linked to node k and having
temporary labels, update the labels:

d(j) = minimum { d(j), d(k) + d;}
and, if d(j)=d(k)+dkj , then p(j)=k

Find the shortest paths from node a toall other nodes.

Justification for step 2 E

suppose node ¥ has the smallest temporary label

dix) = shortest length of any path from node s to node z,
using only intermediate nodes with permanent labels.

The shortest path from node s to node % which includes some
node y with temporary label must be > dly)+dyy > d(x)

Therefore, we can make the label of node ¥ permanent.

£ £

Details Solution

o . . Next, we update the labels on nodes b, ¢, and d:
We start by assigning the initial labels (0 for node a, +eo otherwise) dib) = mintmum { e, 0+3} = 3

{ & box around pli) will indicate that the label is permanent.) dlc) = minimum { ee, 0+8} = &
d(d) = minirnurm { ee, 0+5} =5
In each case, the predecessor label will indicate node a.

{We'll indicate the predecsssor label using a bold arrow.)

drib/—3

Mext we select a temporary label 1o be made permanent. MNext, we update the labels of nodes cand f:
This will be the label of node b, since it has the smallest temporary dic) = minitnum {8, 3+5) = & 2 d(f) = minirmum { ee , 3+71=10
label.
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Next step is to choose the temporary label to be made permansnt. Next we update the temporary labels of the neighbors of node d:
This will be the label of node d, which is the smallest temporary dic) = minimum {8, 5+2}= 7 & d(g) = minimum { e, 5+4} =9
label.

The next temporary label to be made permanent is that of node c. Update the label of nodes e and f:
dle) = minimum {ee , 7+8}=15 and d{f) = minirnum?{10, 7+5}=10

Next, we select the smallest temporary label (that of node gl and We next update the temporary labsls of nodes e and i:
make it permanent. die) = minimum {15, 9+6}=15 and d(i) = minitnum {ee, 9+4}=13

e next make the label of node { permanent. Update the temporary labels of nodes e and he:
dle) = minimum {15, 10+5}=15 and d{h)=min{ e , 1+E}=16
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Choose the next temporary label to be made permanent. This Update the temporary labels of nodes e and j:
will be that of node i, dlel =min{15, 13+1}=14 & d{jl=min{ ee, 13+6}=19

Next, choose the temporary label of node & to be made permanent. Update the temporary labels of node b
dlh) = minimum{16, 14+1}=15

Choose the temporary label of node h to be made permanent. Update the temporary label of node j:
dlj) = minimum{19, 15+2}=17

Finally, we select the label of node j to be made permanent. The predecessor labels (indicated by the bold arrows above)
allow s to "trace back” the shortest path.

For example, the shortest pathtonode jis: a+d-»g-2ie+h=>j

g

Bince no temporary labels remain, the algorithm terminates.
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The distance labels which
we have computed,
ie, y =d(j)
are feasible in the dual LP Mazimize ¥ -V,
subject to

Vo £ Vit d12
¥z i v+ dig
¥z & Wpt diz
Ya £ Vpt dpg
Y4t Yzt dag

{v; unconstrained in sign)

Complementary slackness conditions are satisfied,
ie,

If X,] *0, then ¥i= Yi +dij

Complementary Slackness Theorem i)
guarantees that

X is optimal in the primal LP

¥ is optimal in the dual LP

Identifving the shortest path,
given the predecessor labels

YPATH«V DIJKSTRAAPATH PRED;I
A
A Find shortest path to node V,
A given predecessor list conputed by
] the function DIJESTRA
A
PATHeV

NEXT:¥<PREDL1T¥W1,¥
SNEXT IF O0#11V¥
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PATH+11Y
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Triangle operation

Givenan nxn distance matrix D = {d;j}, atriangle operation fora
fixed node Kk is:
o e min{dij,d1k+ dkj} forall i,j=1,.n but ij=k

1]
(D

© ®

If we perform a triangle operation on the distance
matrix for successive values of k=1,2, .n,

each entry dij becomes equal to the length of the shortest path
fromito].
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1 if edge (i,j) is on
If we define Xij = the shortest path to t
0 otherwise
then ¥ is feasible in the primal LP
Minimize dy; K+ d K5+ dasRoatdaatogtdsgHsy
subject to [- ¥, - Hiz = -1
+ Xy - Hpz - Ky = 0
+ ¥z + Has ¥y = 0
+Hpy +Hg, =t

X2 0 for each arc (ij)

¥LeW DIJKSTRA D;P;T;H;TL;PRED;iter

A

A Dijkstra's algorithm for finding the shortest path
AR from ¥V to all other nodes

A (or from VL1l to VL2l 1f 2=p¥)

R Returns result:

A Lol

A Lrz;a

A

=0K IF #/4/Dz0
1 'Error: Distance matrix i1s not non-negative!
1 LevO ¢ =0

Shortest path lengths
Predecessors on shortest path
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[13]1 OK:TelNeltpD ¢ WeW,0 ¢ PRED«Np0O ¢ TLeLeNpBIG
[141 LIPVWI111+0 o iter+0

[151

[16] NEXT:+FINIS IF (=pTe(T#P)/T

[171 TLLT1<LITIL,LIP1+DIP;T] APL Code for
[181 PREDL ¢LITI#TLIT1)/T1¢P "

(191 PeT(1T4LITITLITI] Dijkstra’s
[201 SNEXT IF P#VI2] Algorithm

[211 FINIS:L«<L,[0.51 PRED
v

‘ Flovd's Algorithm for Shortest Paths

Assume no negative-length cycles exist in the network.

To find: the shortest path between each pair of nodes

‘ Triangle operation

Givenan nxn distance matrix D = {d;j}, atriangle operation fora
fixed node Kk is:
di e min{dij,d1k+ dkj} forall i,j=1,.n but ij=k

i]
Theorem

If we perform a triangle operation on the distance
matrix for successive values of k=1,2, .n,

each entry dij becomes equal to the length of the shortest path
fromito]. <:5

Justification for Flovd's Algorithm g

After the triangle operation for step kg is performed,

d; i= length of shortest path from i to j with only intermediate
nodes k ¢k,

Proof (by induction): Assume true for k-1
Consider triangle cperation for kg
dij = rnindranm{ dija d1k0+ dkoi }
If the shortest path from i to j using only intermediate nodes
1, 2, .. kydoes not pass through kg, then d; jls unchanged by
this operation, and d; j will still satisfy the above property for kg
Otherwise, dij = d1k0+ dkoi and since diko & dkoi each satisfy the
property, d1k0+ dkoi will satisfy the property.
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| APL Code for Flovd's Algorithm E

¥DA«FLOYD D;K;EQ;N;
[11 ]
[21 A FLOYD'S &
[31 ] I is
[41 ] P is
[51 A D& i
[61 ]
[71 A
[81 PeudpDopuHe1tpD
[91 K+l
[101
[111 NEXT:Da«DLDL;KE1=.+
121 Peii¢pDipPLE; 10

[131 DeDa
PLE;K1+0
[151 END_LOOP:=NEXT IF
[17]1 DA+DA,[0.51P
v
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HORTEST PATH ALGORITHH

distance natrixz

predecessor natrix

= matriz of shortest path lengths
hetween every palr of nodes

DLKE; 1
#~EQ + PxEQeD=DA

HzKe«K+1

70+ |
FLOYD'S
ALGORITHM €0 - :
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5
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Path Lengths 204 Predecessors
&
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g t_O 0 10 20 30 40 S0 &0 70 20 90 100 r t_O
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Trip Generation Matrix

to
from 1 2 3 4 5
1| -— 30 35 40 15
2110 --1512 10
3|50 40 -- 35 20
41 25 30 35 -- 40
S| 45 30 3% 40 --

trips/hour {x10)

Assume autos follow the
shortest path from origin
to destination

Find the flow in the network.

&

70 DISTANCE MATRIX
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Applications

Traffic Assignment Problem
Equipment Replacement Problem
Excavation Planning Problem

Apply Floyd's algorithm to
compute the shortest paths
& SD-trees

Assign the flow to each

shortest path

Limitations of the model & algorithm

In reality, shortest distance (or shortest travel
time) is not the sole criterion for route
selection

The capacity of anv link in a transportation
network is finite
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ravel speeds are a function of the amount of
congestion on a link, so that, if the criterion
is shortest travel time, finding the shortest
paths cannot be done independently of
computing the traffic flow.

travel /

time on ~

link -

—

flow on link

&

An example of such an excavation plan:

7/23/98

earth to
be excavated

Let pij be the net profit associated with edge (i,j).

(Not all pj; are positive!)

How can this be modeled as a shoritest
[2a8th profbiem ?

The cost of leasing a truck at the beginning of
Year i until the beginning of Year j (denoted cyj)
embodies the rental fee plus the expected cost
of operating and maintaining the truck.

O
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@
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page 7

Excavation Flanning

An excavation plan for a new open—pit mine is
characterized by a continuous path, starting
at node #1 and ending at node #15.

The net profit of such a plan depends upon the
depth of the excavation as well as the expected
amount of recoverable ore,

For example, if the edge (5,6 is part of the plan,
then the associated net profit can be calculated by
estimating the recoverable ore in the earth above
and subtracting the cost of removing this earth.

Equipment FEeplacement

The Rhode-Bloch Trucking Co. is preparing a
leasing plan for transportation equipment extending
over the next five years. The company can meet
its requirement for a truck by leasing a new truck
at the beginning of Year 1 and keeping it until the
beginning of Year j (<6). If j<6, then the company
replaces the truck at the beginning of vear j and
keeps it until the beginning of Year k (<6], etc.

&

The shortest path from node #1 to node #*6
corresponds to the least-cost schedule for
replacement of the truck.
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