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A function f(xy,Xo,---Xn) iS5 separabie
if it can be written as a sum of terms,
each term being a function of a sing/e
variable:

n
flx1, %z, %0 )= > fi(x)
i1

not separable
VX +2Inx; XiXp + X3
x% + 3x; + 6%, - X2 SXI/XZ - Xy

&

Piecewise-Linear
(separable)

Programming

There are two ways to formulate the
piecewise-linear programming problem
as a Linear Programming problem:

"LAMBDA"™ formulation
"DELTA" formulation

Any value of z in the interval between the left-most
and the right-most grid point may be expressed as a
“convex combination” of the grid points:

f(z) z=Rolp + 18y + A0 + A58

where

) 21.121,li20
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Definition of separability
Piecewise-Linear Optimization
Restricted Basis Entry rules

Example

Refining the Grid

Piecewise-Linear |
(separable)

We approximate a nonlinear
separable function by a
piecewise-linear function:

% 4 %

Suppose that f(z) is a convex
function.

Let Go, ¢y, ... be specified "grid
points”, and

Piecewise-Linear
(separable)

Programming

f(z) Ao» Ay, ... be "weights”
where
p Z l’i = 1, li =0
Co & & G
e

With the same "weights” used in writing the convex
combination of the grid points,

| z= MG + 218y + 220, + A5C5 B

we approximate f(z) as a convex combination of the
f(z) function values at the grid points

‘ f(z) = Aq £(Co) + A4£(Cy) + Aof(C2) + A5f(C5) §
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(Z) f(22) Suppose that f(z) is s A 3
11 1 ?l:;i:lse linear and A given value of z, e.g., z=1.75, can be represented
2 | 2 by several different convex combinations of the grid
3|3 S BY the definition of "convex”, points: 175 =5 (0) + 23
this means that every chord of 12 12
N the graph of f(z) lies on or 1.75 = %(1) +%(3)
I
above the graph! 1.75 = Liy+L2y+ 13
N Consider now the various convex 2 4 4
combinations of grid points yielding 1.75= %(1)*-%(2)
z=1.75..... elc.
0 i 2 3
51 4 5 7
Each set of "weights” in the o1 :E(O) +E(3)
4 convex combinations (which 4 -1 7 f3y=15
N 61.75) = S 6(0) + L 63) = 1

yield the same z) when used
to weight the function values,
will regult !n a different The point (Z LG, Z A f(Ci))
approximation to f(z). 1 i

24 lies on a chord of the graph

which is, of course, on or above
the graph.
That is, 2 4,f() is in general an

1 : T 1 : T overestimate [JiRi¢d)]

_ 5 3
= g(l) +§(3)

1.75 =

u

5 315 1 1
s+ @) =3 ) +52)+ 50

1
2
£(1.75) = %

£(1) + %f(z) + %f(?:) = %

24

Of the various ways to
express z as a convex
combination of grid points,
the way which results in
the minimum wvalue for
an approximation of f(z)

is that which assigns
positive weights only to
the grid points immediately
to the left and right of z.
This is the convex combinaiion
, i ' ' i ’ which best approxi—
0 ! 2 3 0 ! 2 3 mates =/ 1

1.75= (1)+%(2)

1
4

f(1.75) = f(1) + %f@) — %

1
4
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1 3
175= 2(1) +3@)
4_
f(1 75)=if(1) +352) =2
3_
. the convex combinalion
24 which yields the [OWFST
1.75 N\ value ror 1171.75) uses only
two ADJACENT grid poinis!
1_
° R T T

When f(z) is not convex,
the chords do not all lie

£ on or above the graph, and
one can choose convex

(Zng, Zai)

combinations of grid
points yielding approxi-
mations of f(z) which
are underestimates of
the function.

Co IC1 tz ‘Cs &4

"Delta” form
of Separable
Programming

In the "lambda” formulation,
a special variable (1) was
defined for each grid point.
In the "delta” formulation, a
special variable (8 ) will be
defined for each interval
between grid points, i.e., for
each linear piece.

Fhere are two varialions....

“Delta™ form
of Separable
Programming

7/28/98

When minimizing a convesx function f(z) by

choosing the weights in the convex combination,
then,

...at most TWO A;'s will be positive, and
these will be weights of adjacent grid
points!

What happens it" 11z is NOT convex?

For example, in this figure, the lowest (and the
worst!) estimate of f({;) would be obtained by
£| expressing {; as a convex combination of
CI and C4: c3:1,1 C1+1¢4 C4

* with f({;) approximated
by A f(Gi) +Aaf(Ca)
whereas the “hest” approxi—
mation is obiained by

co tl tz 'Ca C4 CS = 0C1 + OC1 +1§3 +0C4

"Delta”™ form
of Separable

Programming

G At o A Gars C
LPefine constanis.
AGi= G- G
Afi = £(G)- £ (i)
Detfine variables.
0<8<1 OF 0= AjzAf;

variation #

each varfable 1s i=1
bounded berween P
zere and 1.00 f(z) = £(Co) + El(Af‘)s‘

0=<dp=---291=1

"Delta” form /
of Separable
Programming

variation #2

~N
1
EA
+
T
B

-
I

each varfable has an
upper bound equal to
the fength of the interval

n
—_

A= (AL) &
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"Delta” form In either variation, at most If we are. _

of Separable ONE variable is allowed to be ® minimizing a non-convex function
Programming at an intermediate value (not &7/or

a bound), i.e., BASIC when we # optimizing over a nonconvex region
use UBT (upper bounding technique) e.g., g(x)<0 where g is non-convex,

Then the simplex method will yield a basic

solution in which

P P
z=Go + EI(AQ)& z=Go El Ai eat most two (adjacent) 1's are basic
» B (Af (A-formulation)
f(z) = £(Co) + 2 (Af)d; f(z) = £(Co) + 2 (AC{)AI eonly one 3 is basic
i=l i=l ! (8-formulation)
08z 28 =1J 0< Aj< A(; el
. “Lambda” formulation
In these cases, a "restricted basis entry” rule Restricted Special set: {Lig, Aij, - Aip )
may be implemented, which will guarantee that Basis Entry
the solution satisfies the desired properties, Rules

® at most 2 A's are in the basis, in which case they
have consecutive indices ( A-formulation)

® at most one 3 is in the basis (3-formulation) 1;; is positive for at How can we modify
most TWO values of j, | Zhe simplex method
in which case they are| s¢ @5 {o impose this
consecutive indices. restriction?

but unfortunately will not guarantee an optimal
solution!

“Lambda” formulation
Special set: {Ajp, Aj1,--- Ajp }

“Lambda” formulation
Special set: {Ajp,Aj1,--- Aip }

Restricted
Basis Entry

Restricted
Basis Entry
Rules

If 2 adjacent weights are in
the basis, then no other weight  Aale Zthat this moedificalion or the simplex

Ay is positive for from the same set may be method does not guarantee optimality, uvnless
at most TWO values considered for basis entry; the function being minimized is a convex
of j, in which case Lf only one weight 2;; is function!
they are consecutive asic, then onlyd;; & i1
indices. are considered as candidates
for basis entry
Restricted “Delta” formulation Restricted "Delta” formulation

Basis Entry Special set: {3i1, 8i2, -+ Sip} Basis Entry Special set: {3i1, diz, --- dip}
Rules

Constraint |

3;; is not considered for
basis entry unless:

d;j is at an intermediate How can we modify  8ijis at anintermediate  ® no other variable in the
level (neither lower nor the simplex method  1evel (Eeithgg“flowe{ nor“t set is basic
upper bound) for at most S0 as lo impose this  UPper bound)ior almost ooe ooy bound

to i _1 is at upper boun
asingle | Gi.e. if UBT is | resiriction? one j (i.e., if UBT is used, ™ %4

at most one variable in = o 8.1 is at lower bound

used, at most one variable the set may be basic.)

in the set is basic.)
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Restricted
Basis Entry

"Delta” formulation
Special set: {8i1, Sz, -+ Jip)

no variable may
enter the basis

A company manufactures three products,
using three limited resources:

resources A me?UCt c aggblgltce
ingredient #1 1 2 1 1000
ingredient #2 10 4 5 7000
ingredient #3 2 1 4000

)
slope
$7/unit
Profit slope
PalXa) (150,1340)

(100,940)

(40,400)

50 100 150

Maximize pa(xa)+ pB(xXB) +pcixc)
subject to

xa + 2Xp + x¢ < 1000
10x4 + 4xp + Sx¢ = 7000
3xp + 2xp+ x¢ < 4000

xp20,xgz20,x¢c20

Each profit function p,, pg, & pg,
is piecewise linear.

7/28/98

Restricted
Basis Entry
Rules

“"Delta” formulation
Special set: {3i1, 8z, --- Jip)

/n this case,
no variable in
the set is in the
basis enlry basis set B,
1.1.1, 1,]_,7)\ 0.0,0,0,0 ane variable in /
Rt s and one variable
in ! may enter 5

considered for

A

U L
-

Because of various factors (e.g., quantity
discounts, use of overtime, etc.) the profits
per unit decrease as sales increase:

product A product B product C
profit profit profit
5ales ($/unit) =ales ($/unit) sales ($/unit)
0-40 10 0-50 6 0-100 S
40-100 9 50-100 4 over 100 4
100-150 8 over 100 3
over 150 7 Determine the most
profitable mix of products
slope
slope $3/unit
$500 1 $4/unit
Profit slope (100,500}
P(Xg) $6/unit ~150,300)
50 100 Xg 150
slope
$4/unit
$500 slope
Profit $5/unit {100,500}
50 ' 100 ' 150
Xc

We can reformulate this as a linear
programming problem in two ways:

“delta” formulation

one variable for each interval

"lambda” formulation

one variable for each grid point
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“"Delta” formulation E
Define Since the simplex algorithm will maximize,

Aar = quantity of A produced at $10/unit profit, the optimum will NOT use a positive value

As2 = quantity of A produced at $9/unit profit, for Ax _unless thg more profitable A,y has
_etc. reached its upper limit (40), etc.

so that

pa(xa) = 10Aa; + 9Aas + 8Aas+ 7Aag Thus, the simplex algorithm will naturally

impose the restricted basis entry (RBE) rules.

0= Ay < 40
0sAszs 60 =100-40 (these profit functions exhibit “decreasing
0< Aa3< 50 =150-100 returns to scale”... J
0 < Apg
)

“Lambda” formulation

Aal Aap AazAag Agl Az AszAct Ace

Max| 10 9 8 7 We require an upper bound (right-most grid
101 1 1 point) for each product A, B, and C. Let's
arbitrarily use 1000 for each.
10 10 10 10 Define a weight for each grid point:
lower S Ao & 0
bounds 0 0 0 O Ay & 40
u er
bgﬂnds 40 60 S50 - Az & 100
Az & 150
- & Asq <> 1000
“Lambda” formulation | “Lambda” formulation
Substitute Max | 0 400 940 1340 6590 | 0 300 500 3200 | 0 500 41000
Pa(xs) = 0 Aag + 400 Aoy + 940 Aoz + 1340 A5 + 6590 Ay 0 40 100 150 1000 | 0 100 200 2000 | O 100 1000
0 400 1000 1500 10000 | 0 200 400 4000 | 0 500 5000
and 0 120 300 450 3000 | 0 100 200 2000 | 0 100 1000
XAZOlAU+40lAl+1001'A2+1501A3+1000;'A4 11 1 1 1 =1

. etc. 1 1 1 1< 1




