

Separable Programming

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu

A function $f(x_1, x_2, \dots, x_n)$ is *separable* if it can be written as a sum of terms, each term being a function of a *single* variable:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n f_i(x_i)$$

separable

$$\sqrt{x_1} + 2 \ln x_2$$

not separable

$$x_1 x_2 + x_3$$

examples

$$x_1^2 + 3x_1 + 6x_2 - x_3^2$$

$$5x_1/x_2 - x_1$$

- Definition of separability
- Piecewise-Linear Optimization
- Restricted Basis Entry rules
- Example
- Refining the Grid

Piecewise-Linear (separable) Programming

We approximate a nonlinear separable function by a piecewise-linear function:

Piecewise-Linear (separable) Programming

There are two ways to formulate the piecewise-linear programming problem as a Linear Programming problem:

 "LAMBDA" formulation

 "DELTA" formulation

Piecewise-Linear (separable) Programming

Suppose that $f(z)$ is a *convex* function.
Let ζ_0, ζ_1, \dots be specified "grid points", and

Any value of z in the interval between the left-most and the right-most grid point may be expressed as a "convex combination" of the grid points:

With the same "weights" used in writing the convex combination of the grid points,

$$z = \lambda_0 \zeta_0 + \lambda_1 \zeta_1 + \lambda_2 \zeta_2 + \lambda_3 \zeta_3$$

we approximate $f(z)$ as a convex combination of the function values at the grid points

A given value of z , e.g., $z=1.75$, can be represented by several different convex combinations of the grid points:

$$1.75 = \frac{5}{12}(0) + \frac{7}{12}(3)$$

$$1.75 = \frac{5}{8}(1) + \frac{3}{8}(3)$$

$$1.75 = \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{4}(3)$$

$$1.75 = \frac{1}{4}(1) + \frac{3}{4}(2)$$

etc.

When minimizing a *convex* function $f(z)$ by choosing the weights in the convex combination, then,

...at most TWO λ_i 's will be positive, and these will be weights of adjacent grid points!

What happens if $f(z)$ is NOT convex?

For example, in this figure, the lowest (and the worst!) estimate of $f(\zeta_3)$ would be obtained by expressing ζ_3 as a convex combination of ζ_1 and ζ_4 : $\zeta_3 = \lambda_1 \zeta_1 + \lambda_4 \zeta_4$ with $f(\zeta_3)$ approximated by $\lambda_1 f(\zeta_1) + \lambda_4 f(\zeta_4)$ whereas the "best" approximation is obtained by $\zeta_3 = 0\zeta_1 + 0\zeta_1 + 1\zeta_3 + 0\zeta_4$

"Delta" form of Separable Programming

In the "lambda" formulation, a special variable (λ) was defined for each grid point. In the "delta" formulation, a special variable (δ) will be defined for each interval between grid points, i.e., for each linear piece.

There are two variations....

"Delta" form of Separable Programming

variation #1

each variable is bounded between zero and 1.00

$$z = \zeta_0 + \sum_{i=1}^p (\Delta \zeta_i) \delta_i$$

$$f(z) \approx f(\zeta_0) + \sum_{i=1}^p (\Delta f_i) \delta_i$$

$$0 \leq \delta_p \leq \dots \leq \delta_1 \leq 1$$

"Delta" form of Separable Programming

variation #2

each variable has an upper bound equal to the length of the interval

$$z = \zeta_0 + \sum_{i=1}^p \Delta_i$$

$$f(z) \approx f(\zeta_0) + \sum_{i=1}^p \left(\frac{\Delta f_i}{\Delta \zeta_i} \right) \Delta_i$$

$$\Delta_i \equiv (\Delta \zeta_i) \delta_i$$

$$0 \leq \Delta_i \leq \Delta \zeta_i$$

**"Delta" form
of Separable
Programming**

use UBT (upper bounding technique)

variation #1

$$z = \zeta_0 + \sum_{i=1}^p (\Delta \zeta_i) \delta_i$$

$$f(z) \approx f(\zeta_0) + \sum_{i=1}^p (\Delta f_i) \delta_i$$

$$0 \leq \delta_p \leq \dots \leq \delta_1 \leq 1 \Leftrightarrow$$

variation #2

$$z = \zeta_0 + \sum_{i=1}^p \Delta_i$$

$$f(z) \approx f(\zeta_0) + \sum_{i=1}^p \left(\frac{\Delta f_i}{\Delta \zeta_i} \right) \Delta_i$$

$$0 \leq \Delta_i \leq \Delta \zeta_i$$

If we are:

- minimizing a non-convex function
- &/or
- optimizing over a nonconvex region
e.g., $g(x) \leq 0$ where g is non-convex,

Then the simplex method will **NOT** yield a basic solution in which

- at most two (adjacent) λ 's are basic (λ -formulation)
- only one δ is basic (δ -formulation)

**Restricted
Basis Entry
Rules**

In these cases, a "restricted basis entry" rule may be implemented, which will guarantee that the solution satisfies the desired properties,

- at most 2 λ 's are in the basis, in which case they have consecutive indices (λ -formulation)
- at most one δ is in the basis (δ -formulation)

but unfortunately will not guarantee an optimal solution!

**Restricted
Basis Entry
Rules**

Constraint

λ_{ij} is positive for at most TWO values of j , in which case they are consecutive indices.

"Lambda" formulation

Special set: $\{\lambda_{i0}, \lambda_{i1}, \dots, \lambda_{ip}\}$

RBE Rule

If 2 adjacent weights are in the basis, then no other weight from the same set may be considered for basis entry; if only one weight λ_{ij} is basic, then only $\lambda_{i,j-1}$ & $\lambda_{i,j+1}$ are considered as candidates for basis entry

**Restricted
Basis Entry
Rules**

"Lambda" formulation

Special set: $\{\lambda_{i0}, \lambda_{i1}, \dots, \lambda_{ip}\}$

Constraint

λ_{ij} is positive for at most TWO values of j , in which case they are consecutive indices.

How can we modify the simplex method so as to impose this restriction?

**Restricted
Basis Entry
Rules**

"Lambda" formulation

Special set: $\{\lambda_{i0}, \lambda_{i1}, \dots, \lambda_{ip}\}$

Note that this modification of the simplex method does not guarantee optimality, unless the function being minimized is a convex function!

**Restricted
Basis Entry
Rules**

Constraint

δ_{ij} is at an intermediate level (neither lower nor upper bound) for at most a single j (i.e., if UBT is used, at most one variable in the set is basic.)

"Delta" formulation

Special set: $\{\delta_{i1}, \delta_{i2}, \dots, \delta_{ip}\}$

How can we modify the simplex method so as to impose this restriction?

**Restricted
Basis Entry
Rules**

"Delta" formulation

Special set: $\{\delta_{i1}, \delta_{i2}, \dots, \delta_{ip}\}$

RBE Rule

δ_{ij} is at an intermediate level (neither lower nor upper bound) for at most one j (i.e., if UBT is used, at most one variable in the set may be basic.)

δ_{ij} is not considered for basis entry unless:

- no other variable in the set is basic
- $\delta_{i,j-1}$ is at upper bound
- $\delta_{i,j+1}$ is at lower bound

Restricted
Basis Entry
Rules

"Delta" formulation
Special set: $\{\delta_{i1}, \delta_{i2}, \dots, \delta_{ip}\}$

RBE Rule

Example

$1, 1, 1, 1, \frac{3}{8}, 0, 0, 0, 0, 0$
 U B L

no variable may
enter the basis

Restricted
Basis Entry
Rules

"Delta" formulation
Special set: $\{\delta_{i1}, \delta_{i2}, \dots, \delta_{ip}\}$

RBE Rule

Example

$1, 1, 1, 1, 1, 0, 0, 0, 0, 0$
 U L

considered for
basis entry

In this case,
no variable in
the set is in the
basis set B ;
one variable in L
and one variable
in U may enter B

Example

A company manufactures three products,
using three limited resources:

resources	product			available supply
	A	B	C	
ingredient #1	1	2	1	1000
ingredient #2	10	4	5	7000
ingredient #3	3	2	1	4000

Because of various factors (e.g., quantity discounts, use of overtime, etc.) the profits per unit decrease as sales increase:

Determine the most
profitable mix of products

Maximize $p_A(x_A) + p_B(x_B) + p_C(x_C)$
subject to

$$\begin{cases} x_A + 2x_B + x_C \leq 1000 \\ 10x_A + 4x_B + 5x_C \leq 7000 \\ 3x_A + 2x_B + x_C \leq 4000 \\ x_A \geq 0, x_B \geq 0, x_C \geq 0 \end{cases}$$

We can reformulate this as a linear
programming problem in two ways:

"delta" formulation
one variable for each interval

"lambda" formulation
one variable for each grid point

Each profit function p_A , p_B , & p_C ,
is piecewise linear.

"Delta" formulation

Define

Δ_{A1} = quantity of A produced at \$10/unit profit,
 Δ_{A2} = quantity of A produced at \$9/unit profit,
... etc.

so that

$$p_A(x_A) = 10\Delta_{A1} + 9\Delta_{A2} + 8\Delta_{A3} + 7\Delta_{A4}$$

$$0 \leq \Delta_{A1} \leq 40$$

$$0 \leq \Delta_{A2} \leq 60 = 100-40$$

$$0 \leq \Delta_{A3} \leq 50 = 150-100$$

$$0 \leq \Delta_{A4}$$

Since the simplex algorithm will maximize, the optimum will NOT use a positive value for Δ_{A2} unless the more profitable Δ_{A1} has reached its upper limit (40), etc.

Thus, the simplex algorithm will naturally impose the restricted basis entry (RBE) rules.

(these profit functions exhibit "decreasing returns to scale"....)

	Δ_{A1}	Δ_{A2}	Δ_{A3}	Δ_{A4}	Δ_{B1}	Δ_{B2}	Δ_{B3}	Δ_{C1}	Δ_{C2}	
Max	10	9	8	7	6	4	3	5	4	
	1	1	1	1	2	2	2	1	1	\leq
	10	10	10	10	4	4	4	5	5	\leq
	3	3	3	3	2	2	2	1	1	\leq
	0	0	0	0	0	0	0	0	0	
	40	60	50	∞	50	50	∞	100	∞	
lower bounds										
upper bounds										

"Lambda" formulation

We require an upper bound (right-most grid point) for each product A, B, and C. Let's arbitrarily use 1000 for each.

Define a weight for each grid point:

$$\lambda_{A0} \leftrightarrow 0$$

$$\lambda_{A1} \leftrightarrow 40$$

$$\lambda_{A2} \leftrightarrow 100$$

$$\lambda_{A3} \leftrightarrow 150$$

$$\lambda_{A4} \leftrightarrow 1000$$

"Lambda" formulation

Substitute

$$p_A(x_A) = 0\lambda_{A0} + 400\lambda_{A1} + 940\lambda_{A2} + 1340\lambda_{A3} + 6590\lambda_{A4}$$

and

$$x_A = 0\lambda_{A0} + 40\lambda_{A1} + 100\lambda_{A2} + 150\lambda_{A3} + 1000\lambda_{A4}$$

... etc.

Max	0	400	940	1340	6590	0	300	500	3200	0	500	4100	
	0	40	100	150	1000	0	100	200	2000	0	100	1000	≤ 1000
	0	400	1000	1500	10000	0	200	400	4000	0	500	5000	≤ 7000
	0	120	300	450	3000	0	100	200	2000	0	100	1000	≤ 4000
	1	1	1	1	1					=	1		
						1	1	1	1	=	1		
							1	1	1	=	1		

