

Search Trees

- Each node of the search tree for a problem represents a subset of feasible solutions of the problem
- The **root** of the tree represents the set of all feasible solutions of the problem
- o The **descendents** of each node of the tree represent a **partition** of the set represented by that node

 ⇔ ⇔

A collection of subsets $\ B_{i}$ of set A $\ (i=1,2,...t)$ is a partition if

Ĵ

$$\begin{array}{c} \mathsf{B_1} \cup \mathsf{B_2} \cup \mathsf{B_3} \cdots \cup \mathsf{B_t} \texttt{= A} \\ \\ \mathsf{and} \\ \\ \mathsf{B_i} \cap \mathsf{B_j} \texttt{= } \varnothing \qquad \text{if } \mathsf{i} \neq \mathsf{j} \end{array}$$

♦♦

Example: Ranking Nodes in a Preference Graph

In many experiments (especially in the social sciences, when numerical measurement of attributes are difficult or impossible), one is required to **rank** a set of objects by comparing only **two at a time**.

Six different dog foods are to be ranked according to their appeal to dogs.

Each day, 2 of the 6 are served to a dog, who indicates his preference by finishing it first.

In the dog food example, the dog exhibited some inconsistency: for example,

How can we establish a "good" ranking?

Methods for Ranking

- ranking by score: the score of an object is the number of pairs in which it is preferred (i.e., the row-sum of the preference matrix).
 - ties may occur
 - assumes every possible pair was compared

	Α	В	С	D	Ε	F	score	
Α	-	1	1	0	1	1	4	For example,
В	0	-	0	1	1	0	2	A > C > B > E > F > D
С	0	1	-	1	1	1	4	or $C>A>F>E>B>D$
D	1	0	0	-	0	0	1	etc.
Ε	0	0	0	1	-	1	2	
F	0	1	0	1	0	-	2 <	느

Methods for Ranking

• ranking by Hamiltonian path: find a path through every node of the preference graph such that each node is preferred over its successor. For example, $A \rightarrow C \rightarrow B \rightarrow E \rightarrow F \rightarrow D$ or $A \rightarrow C \rightarrow E \rightarrow F \rightarrow B \rightarrow D$

Using a Search Tree for Minimum Discrepancy Ranking

Two different methods for partitioning:

 choose a pair of objects X & Y which have not been ranked.

Form two subsets of rankings:

- --those in which X > Y, i.e., X is ranked above Y
- --those in which Y > X, i.e., Y is ranked above X

Methods for Ranking

• ranking with minimum discrepancies

A discrepancy is an instance in which X is ranked above Y, but Y is preferred to X

For example, the ranking A > B > D has one discrepancy (i.e., A>D)

- does not assume that every pair was compared!
- is a difficult problem to solve

Second method of partitioning:

ullet an object is assigned to a position in the ranking e.g., in the first partition, $oldsymbol{n}$ nodes are created, in each of which one of the $oldsymbol{n}$ objects is assigned to the $oldsymbol{first}$ position in the ranking, and

in the second partition, n-1 nodes are created, one for each of the remaining n-1 objects which might be assigned to the **second** position in the ranking, etc.

ʹϽເϽ

 $\langle \neg \, c \rangle$

