Stochastic Transportation Problem

non-simple recourse nomally-distributed demand

Stochastic Decomposition

© D.L.Bricker, 2002
Dept of Mechanical \& Industrial Engineering
The University of Iowa

Stochastic Decomposition

DATA

Stochastic Transportation

First-stage data:

A, B=
$\begin{array}{llllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & =9\end{array}$
$0001111000=3$
$000000111=8$

i	variable	cost
1	X11	0
2	X12	2
3	X13	3
4	X21	2
5	X22	0
6	X23	2
7	X31	3
8	X32	2
9	X33	0

Objective: Minimize
\qquad

Second-stage data
Costs:

i	variable	$\underline{\text { q }}$	
1	Y12	6	
2	Y13	10	
3	Y21	6	
4	Y23	15	
5	Y31	12	
6	Y32	15	
7	EX1	-4	<-excess
8	EX2	-4	supply
9	EX3	-2	
10	SH1	15	<-shortage
11	SH2	20	of supply

Technology matrix T

(coefficients of X in 2 nd stage) $=$

$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}$

Technology matrix \mathbf{W}
(coefficients of Y in 2nd stage) $=$
$\begin{array}{llllllllllll}-1 & -1 & 1 & 0 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & 0\end{array}$
$1 \begin{array}{llllllllllll}1 & 0 & -1 & -1 & 0 & 1 & 0 & -1 & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{llllllllllll}0 & 1 & 0 & 1 & -1 & -1 & 0 & 0 & -1 & 0 & 0 & 1\end{array}$
(Only the right-hand-side vector is random!) Right-hand-sides in second stage =

$\frac{i}{2}$	$\frac{\text { mean }}{}$	$\frac{\text { std dev }}{}$	
2	7	2	random
3	7	3	demands

Certainty-Equivalent Tableau

Using expected values for right-hand-sides

b	z	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	10	11	12
0	1	0	2	3	2	0	2	3	2	0	6	10	6	15	12	15	-4	-4	-2	15	20	30

$\begin{array}{lllllllllllllllllllllll}9 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllllllllllllllllll}3 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$8 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
$60 \begin{array}{llllllllllllllllllllll} & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & -1 & 1 & 0 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllllllllllllll}7 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 1 & 0 & -1 & 0 & 0 & 1 & 0\end{array}$
$7 \begin{array}{llllllllllllllllllllllll}7 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & -1 & -1 & 0 & 0 & -1 & 0 & 0 & 1\end{array}$

Optimal Solution

Total objective function: 8
Stage One: nonzero variables:

i	variable	value
1	X11	6
2	X12	3
5	X22	3
8	X32	1
9	X33	7

Second Stage: nonzero variables

i variable value

--none-

Stochastic Decomposition

We use the "Stochastic Decomposition" method of Higle \& Sen, which approximates Benders' decomposition.

Iteration \#1

Trial X for primal subproblems (\#1) is

i	Variable	Value	
1	X11	6	
2	(using solution		
5	X22	3	of the
8	X32	3	certainty-
9	X33	1	equivalent
		7	problem)

Solve subproblem with new trial x (\#1) :
RHS $=6.9619110 .26267 .11435 \quad$ (1st scenario)
Second-stage cost: 82.539

Optimal dual vector: $152025 \quad$ (1st $d u a l$ sol'n $\lambda)$
Newly-generated optimality cut at iteration 1
$\begin{array}{llllllllllll}\text { s i } & \text { beta } & \text { [1] } & \text { [2] } & \text { [3] } & \text { [4] } & \text { [5] } & \text { [6] } & \text { [7] } & \text { [8] } & \text { [9] }\end{array}$
s is scenario \#, i is dual solution \#, beta is constant

Primal subproblems summary

First stage cost: 8
Second stage costs:

s	Lambda\#	cost
1	1	82.539

Average second stage cost: 82.539
Total: 90.539

Solution of Master Problem

[^0]
Iteration \#2

Trial X for primal subproblems (\#2) is

i	Variable	Value
3	X13	9
6	X23	3
9	X33	8

Solve subproblem with new trial x (\#2) :
Primal Subproblem Result:
RHS $=6.706247 .763547 .56864 \quad\left(2^{\text {nd }}\right.$ scenario)
Second-stage cost: 203.043
Optimal dual vector: $1518 \quad 3 \quad\left(2^{\text {nd }}\right.$ dual sol'n $\left.\lambda\right)$
Solve subproblem with incumbent solution (\#1) :
Primal Subproblem Result:
RHS $=6.706247 .763547 .56864$
Second-stage cost: 40.0802
Optimal dual vector: 152025 ($1^{\text {st }} \lambda$ again!)

Newly-generated optimality cut at iteration 2

s i	beta	[1]	[2]	[3] [4]	[5]	[6]	[7]	[8]	[9]		
1	1	487.539	-15	-20	-25	-15	-20	-25	-15	-20	-25

$\begin{array}{llllllllllll}2 & 1 & 445.08 & -15 & -20 & -25 & -15 & -20 & -25 & -15 & -20 & -25\end{array}$
s is scenario \#, i is dual solution \#, beta is constant
Aggregate cut:
beta [1] [2] [3] [4] [5] [6] [7] [8] [9] $466.31-15-20-25-15-20-25-15-20-25$

Primal subproblems summary

First stage cost: 33
Second stage costs:

s	Lambda\#	cost
1	1	-12.4610
2	1	40.0802

Average second stage cost: 13.8096
Total: 46.8096

Solution of Master Problem

$X=\begin{array}{lllllllll}0 & 0 & 9 & 0 & 0 & 3 & 0 & 0 & 8\end{array}$
First-stage cost: 33
Estimated second-stage cost $\mathrm{Q}(\mathrm{X})=-12.461$
Total (estimated) expected value: 20.539

Iteration \#3

Trial X for primal subproblems (\#2) is

i	Variable	Value
3	X13	9
6	X23	3
9	X33	8

Solve subproblem with new trial x (\#2) : Primal Subproblem Result:

RHS $=5.484755 .3545913 .8181 \quad$ (3 ${ }^{\text {rd }}$ scenario)
Second-stage cost: 160.108
Optimal dual vector: 15183 (2nd again!)

Newly-generated optimality cut at iteration 3

s i	beta	[1]	[2]	3]	[4]	[5]	$6]$	[7]	[8]	$9]$	
1	2	310.498	-15	-18	-3	-15	-18	-3	-15	-18	-3

s is scenario \#, i is dual solution \#, beta is constant

Aggregate cut:
$\frac{\text { beta [1] [2] 3] [4] [5] 6] [7] [8] 9] }}{264.55-15-18}-3-15-18-3-15-18-3$

Primal subproblems summary

First stage cost: 33
Second stage costs:

s	Lambda\#	cost
1	2	203.043
2	2	250.498
3	2	160.108

Average second stage cost: 204.55
Total: 237.55

Solution of Master Problem

$X=009003008$
First-stage cost: 18.3896
Estimated second-stage cost $Q(X)=30.394$
Total (estimated) expected value: 48.7836
...etc.

Summary of 200 iterations

```
Stochastic Decomposition
Random number seed used in computation: 7200
Lower bound used in updating old cuts: 0
Method: Subproblems solved approximately
Tolerance for distinguishing first-stage solutions X:
1.0E-1
# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: }39
# first-stage solutions generated: 79
Best solution found is #68 with estimated cost 46.3373
23 second-stage problems were solved using this X
# second-stage dual solutions generated: 16
```

Plot of upper \& lower "bounds"

Plot of variables X12 \& X32 vs iteration

Stochastic Decompositio
05/08/02
page 18

Plot of the randomly-generated right-hand-sides of constraints $1 \& 2$

Summary

```
Stochastic Decomposition
Random number seed used in computation: 7200
Lower bound used in updating old cuts: 0
Method: Subproblems solved exactly
Tolerance for distinguishing first-stage solutions:1.0E-1
# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: 5330
# first-stage solutions generated: 73
Best solution found is #1 with estimated cost 47.4702
2 0 0 \text { second-stage problems were solved using this X}
# second-stage dual solutions generated: 18
```


Evaluation of trial solution

i	variable	X[i]
1	X11	6
2	X12	3
5	X22	3
8	X32	1
9	X33	7

(Using optimality cuts as approximation of expected second-stage cost.)

First stage objective:	8.00
Expected second stage objective:	$\underline{82.54}$
Total:	90.54

Total:
$\frac{82.54}{90.5}$
(Using expected second-stage costs approximated
by restriction to 18 recorded dual solutions.)
First stage objective:
8.00

Expected second stage objective:
$\frac{45.67}{53.67}$
Total:

8.00

$\frac{39.47}{47.47}$ First stage objective:
Total:
ochastic Decomposition
05/0802
page 22

We'll try 500 iterations with a different random number seed:

```
Stochastic Decomposition
Random number seed used in computation: 7179
Lower bound used in updating old cuts: 0
Method: Subproblems solved approximately
Tolerance for distinguishing first-stage solutions: 1.0E-1
# iterations (= # right-hand-sides sampled): 500
# second-stage problems solved: }99
# first-stage solutions generated: 93
Best solution found is #92 with estimated cost 50.5342
3 0 9 \text { second-stage problems were solved using this X}
\# second-stage dual solutions generated: 18
```

Evaluation of trial solution \# 92

i	variable	X[i]
1	X11	6.51181
2	X12	2.48819
5	X22	3.00000
9	X33	8.00000

Using optimality cuts as approximation of expected second-stage cost:

First stage objective:
$\begin{array}{r}4.98 \\ 49.42 \\ \hline\end{array}$
Expected second stage objective:
54.40

Total:
Using expected second-stage costs approximated
by restriction to 18 recorded dual solutions:
First stage objective:
Expected second stage objective.
Total:
Using 309 evaluations of second-stage costs:
First stage objective:
4.98

Expected second stage objective
43.91

Total:

[^0]: $x=\begin{array}{llllllll}6 & 3 & 0 & 0 & 3 & 0 & 0 & 1\end{array}$
 First-stage cost: 33
 Estimated second-stage cost $\mathrm{Q}(\mathrm{X})=-12.461$
 Total (estimated) expected value: 20.539

