

ILP models of the SPL problem

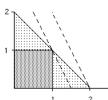
Define variables:

 $Y_i = \begin{cases} 1 & \text{if plant site i is selected} \\ 0 & \text{otherwise} \end{cases}$

 $X_{ij} = \begin{cases} 1 & \text{if plant i serves all demand of customer j} \\ 0 & \text{otherwise} \end{cases}$

©Dennis Bricker, U. of Iowa, 1997

Models #1 & #2 are equivalent, in that the feasible solution sets are identical.... But— their LP relaxations (i.e., replacing $Y_i \in \{0,1\}$ with $0 \le Y_i \le 1$) are not!



©Dennis Bricker, U. of Iowa, 1997

LP Relaxation of Model #2

At the LP optimum,

$$\begin{split} \sum_{j=1}^{N} \ X_{ij} &\leq N Y_i \ \forall \ i \quad \text{is "tight",} \\ \text{i.e., } Y_i &= \frac{1}{N} \sum_{j=1}^{N} \ X_{ij} \end{split}$$

Eliminate
$$Y_i$$
 Minimize $\sum\limits_{i=1}^{M}\sum\limits_{j=1}^{N}C_{ij}~X_{ij}+\sum\limits_{i=1}^{M}~\frac{1}{N}~F_{i\sum\limits_{j=1}^{N}}~X_{ij}$

$$\implies \left\{ \begin{array}{l} \text{Minimize} \ \sum\limits_{i=1}^{M} \sum\limits_{j=1}^{N} \left[C_{ij} + \frac{F_i}{N} \right] X_{ij} \\ \\ \text{s.t.} \ \sum\limits_{i=1}^{M} \ X_{ij} = 1 \ \forall \ j{=}1, \cdots N \\ \\ X_{ij} \geq 0 \ \forall \ i \& j \end{array} \right.$$

©Dennis Bricker, U. of Iowa, 1997

Given: M candidate locations, N customers F_i = fixed cost of establishing a plant at site i, i=1,2,...M

 C_{ii} = cost of supplying all demand of customer j from plant i, j=1,2,...N

The Problem: Select a set of plant locations and allocation of customers to plants so as to minimize the total cost.

Note: there are no capacity constraints for a plant which has been selected, and the number of plants is not specified (unlike p-median problem)

©Dennis Bricker, U. of Iowa, 1997

Model #1

$$\begin{split} & \text{Minimize} \quad \sum_{i=1}^{M} \sum_{j=1}^{N} C_{ij} \; X_{ij} + \sum_{i=1}^{M} F_i \; Y_i \\ & \text{s.t.} \quad \sum_{i=1}^{M} X_{ij} = 1 \quad \forall \; j{=}1, \cdots N \\ & \quad X_{ij} \leq Y_i \quad \forall \; i\&j \\ & \quad Y_i \in \left\{0,1\right\}, \; X_{ij} \geq 0 \quad \ \forall \; i\&j \end{split}$$

Model #2

Replace constraints $X_{ij} \leq Y_i \quad \forall i \& j$ with aggregated constraints

$$\sum_{i=1}^{N} X_{ij} \leq NY_{i} \ \forall \ i$$

©Dennis Bricker, U. of Iowa, 1997

Minimize $-2X_{i1} - X_{i2}$ feasible set for $X_{11} + X_{12} \le 2$ Model #1 provides a higher, "better" lower bound on the feasible set for $X_{i1} \le 1$ optimum! Model #2 is more "compact", and

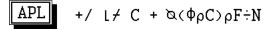
the LP relaxation is easier to solve.

©Dennis Bricker, U. of Iowa, 1997

The solution is $X_{ij}^* = \begin{cases} 1 & \text{if } C_{ij} + \frac{F_i}{N} \leq C_{kj} + \frac{F_k}{N} \ \forall i \\ 0 & \text{otherwise} \end{cases}$

with objective value $\sum\limits_{i=1}^{N} \ \underset{i}{min} \left\{ C_{ij} + \frac{F_{i}}{N} \right\}$

Although not a strong bound, this is easily computed:



4 = M = # potential plant sites 8 = N = # demand points

					osts					
i	j=	1	2	3	4	5	6	7	8	F
1 2 3 4		10 3 8	6 5 5 6	8 10 7 4	9 0 9 7	5 8 4 5	4 10 5 10	3 9 2 8	0 9 3 8	140 120 177 128
D		98	12	7	33	49	33	87	78	

Weak LP Relaxation of Simple Plant Location Problem

The Matrix C + (F÷N)

્ t	0							
f	_1	2	3	4	5	6	7	8
r 0 1 m 2 3	144 130 180 136	146 125 182 134	148 130 184 132	149 120 186 135	145 128 181 133	144 130 182 138	143 129 179 136	140 129 180 136

The LP bound is found by summing the minima in each column Lower bound provided by weak LP relaxation = 1031.38

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Surrogate

Define a surrogate multiplier for Constraint each constraint: U_j , $j=1,\dots N$; $\sum U_j=1$

Form a linear combination of the constraints

$$\left. \begin{array}{c} U_{1} \times \sum_{i} X_{i1} = U_{1} \times 1 \\ \vdots \\ U_{N} \times \sum_{i} X_{iN} = U_{N} \times 1 \end{array} \right\} \Rightarrow \sum_{j} U_{j} \sum_{i} X_{ij} = \sum_{j} U_{j} \Rightarrow \sum_{j} \sum_{i} U_{j} X_{ij} = 1$$

This *surrogate constraint* is implied by the original set of constraints, but is less restrictive.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Surrogate Relaxation

We replace the original constraints of Model #3 with the single surrogate

$$\begin{split} & \text{Minimize} & \sum_{i=1}^{M} \, f_i(X_{i1}, X_{i2}, \cdots X_{iN}) \\ & \text{subject to} & \sum_{j} \, \sum_{i} \, \, U_j X_{ij} = 1 \\ & \quad \quad X_{ij} \geq 0 \, \, \forall \, \, i \& j \end{split}$$

Because the objective function is *concave*, the theory of nonlinear programming assures us that an extreme point of the feasible region (i.e., a basic solution) is optimal, so only a single variable is $\neq 0$.

For example,
$$X_{ij} = \begin{cases} 1/U_q & \text{if } i = p, \ j = q \\ 0 & \text{otherwise} \end{cases}$$
 with cost $F_p + C_{pq} \times 1/U_q$

for some p and q.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Therefore, we can solve the surrogate relaxation by enumerating the MxN basic solutions, and selecting the least cost solution:

$$\mathbf{S}(U) = \underset{i,j}{\text{minimum}} \left\{ F_i + C_{ij} \middle/ U_i \right\}$$

Because the optimal solution of the original SPL problem is feasible in this surrogate relaxation,

$$S(U) \leq \text{optimum of SPL problem}$$

for all
$$U = (U_1, U_2, ... U_N)$$

Surrogate Dual Problem

Since for each U, S(U) gives us a lower bound on the SPL optimal value,

select the surrogate multipliers U to give us the "best", i.e., greatest lower bound:

$$\widehat{\mathbf{S}} = \underset{j}{\text{maximum}} \ \ \mathbf{S}(\mathbf{U})$$

$$\mathbf{s.t.} \ \sum_{j} \ \mathbf{U}_{j} = \mathbf{1}$$

Use of Surrogate Dual bound in a Branch-&-Bound algorithm

Given a value V (e.g., the incumbent solution), we can fathom a subproblem if its surrogate dual value 💲 exceeds V, and this may be tested

without explicitly computing \$:

$$\begin{split} \widehat{S} \geq V &\Longleftrightarrow \exists \ U = (U_1, \cdots U_N) \ \text{such that} \ \begin{cases} V \leq F_i + C_{ij} \middle/ U_j & \forall \ i \& j \\ & \sum_i \ U_j = 1 \end{cases} \end{split}$$

©Dennis Bricker, U. of Iowa, 1997

Assuming F_i < V, this is equivalent to

$$\left\{ \begin{array}{l} U_{j} \leq \frac{C_{ij}}{V - F_{i}} \; \forall i\&j \\ \\ \sum_{j} U_{j} = 1 \end{array} \right. \label{eq:equation:equation:equation}$$

which clearly has a solution if and only if the least upper bounds of U_i , j=1,...N, have a sum ≥ 1 :

$$\widehat{S} \geq V \Longleftrightarrow \quad \sum_{j} \ \underset{i}{min} \left\{ \frac{C_{ij}}{V - F_{i}} \right\} \geq 1$$

©Dennis Bricker, U. of Iowa, 1997

$$rac{\mathrm{C_{ij}}}{\mathrm{V}$$
 - $\mathrm{F_{i}}$

0.8682 0.07973 (0.03101) 0.2558 0.2713 0.3654 0.7708 0.691

Sum:

$$\sum_{i} \min_{i} \left\{ \frac{C_{ij}}{V - F_{i}} \right\} = 1.023$$

The conclusion of the comparison test is: $\widehat{\mathbf{S}} \geq \mathbf{V}$ (= 1031)

By any of several methods, the equation

$$\sum_{j} \min_{i} \left\{ \frac{C_{ij}}{-F_{i}} \right\} = 1$$

may easily be solved for $\widehat{\mathbf{s}}$ if the actual value of $\widehat{\mathbf{S}}$ is necessary.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Lower bound= 1074, Upper bound= 1449 Estimated duality gap = 25.89%

Upper bound achieved by Y = 1 1 1 1, i.e., opening plants 1 2 3 4

(Not guaranteed to be optimal!)

Surrogate Dual Algorithm

Matrix C÷α(ΦρC)ρ(SD-F)

0.4198 0.0771 0.05997 0.318 0.2624 0.1414 0.2795 0 1.027 0.0629 0.07339 0 0.411 0.346 0.8209 0.736 0.3278 0.0669 0.05464 0.3312 0.2185 0.184 0.194 0.2609 0.8289 0.07612 0.0296 0.2442 0.259 0.3489 0.7358 0.6597

(Y[i]=1 if any column minimum,i.e., Lambda, is found in row # i of the matrix above)

Surrogate multipliers

j 1 2 3 45 6 7 8 Lambda[j] 0.3278 0.0629 0.0296 0 0.2185 0.1414 0.194 0

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

for the Simple Plant Location problem

Note: If $\mu_{ij} = \frac{F_i}{N} \ \ \, \forall i,j$, this is the lower bound provided by the LP relaxation of model #2! By appropriate choice of μ_{ij} , it may give us a better lower bound.

Proof: SPL model #1 may be written

$$\begin{split} \Phi &= \text{minimum} \ \sum_{i,j} \ C_{ij} X_{ij} + \sum_{i} \left(F_i - \sum_{j} \ \mu_{ij} \right) \! Y_i + \sum_{i,j} \ \mu_{ij} Y_i \\ \text{s.t.} \ \sum_{i} \ X_{ij} &= 1, \ \ X_{ij} \leq Y_i, \ X_{ij} \geq 0, \ Y_i \in \left\{ 0,1 \right\} \ \forall i,j \end{split}$$

$$\Rightarrow \Phi \geq \sum_{i,j} \left| \mathbf{C}_{ij} X_{ij} + \sum_{i,j} \left| \boldsymbol{\mu}_{ij} Y_i \right| \geq \sum_{i,j} \left| \mathbf{C}_{ij} X_{ij} + \sum_{i,j} \left| \boldsymbol{\mu}_{ij} X_{ij} \right| = \sum_{i,j} \left| \left(\mathbf{C}_{ij} + \boldsymbol{\mu}_{ij} \right) X_{ij} \right|$$

$$\Rightarrow \qquad \underset{i,j}{\text{minimum}} \quad \sum_{i,j} \left(C_{ij} \, {}_{+} \mu_{ij} \right) \! X_{ij}$$

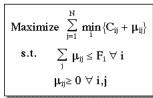
$$\text{s.t.} \quad \sum_{i} X_{ij} = 1, \quad X_{ij} \! \leq \! Y_i, \ X_{ij} \! \geq \! 0, \ Y_i \! \in \! \left\{ 0, 1 \right\} \ \forall i,j$$

must give us a lower bound for SPL, namely

$$\sum_{i=1}^{N} \ \underset{i}{min} \big\{ C_{ij} + \mu_{ij} \big\}$$

The dual problem is, then, to choose the quantities μ_{ij} so as to obtain the *greatest lower bound*, i.e.,

$$\begin{aligned} \text{Maximize} \quad & \sum_{j=1}^{N} \ \underset{i}{\text{min}} \left\{ C_{ij} + \mu_{ij} \right\} \\ \text{s.t.} \quad & \sum_{j} \ \mu_{ij} \leq F_i \ \forall \ i \\ & \mu_{ij} \geq 0 \ \forall \ i,j \end{aligned}$$



The LP equivalent:

$$\begin{aligned} & \text{Maximize} \sum_{j=1}^{N} Z_{j} \\ & \text{s.t.} \qquad Z_{j} \leq C_{ij} + \mu_{ij} \ \forall \ i,j \\ & \sum_{j} \mu_{ij} \leq F_{i} \ \forall \ i \\ & \mu_{ij} \geq 0 \ \forall \ i,j \end{aligned}$$

The dual of this LP is, in fact, the LP relaxation of SPL model #1!

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Bilde-Krarup-Erlenkotter [BKE] Algorithm

This algorithm is a dual ascent algorithm for computing good feasible solutions to the dual of the LP relaxation of Model #1.

At each iteration, exactly one μ_{ij} is adjusted to give an improvement in the lower bound. It terminates when no improvement can be obtained by adjusting a single multiplier.

Bilde-Krarup-Erlenkotter Dual Algorithm

Step 1: k←1 & Lambda← 294 60 28 0 196 132 174 0

Step 2a: c= 98 0 0 0 0 0 0 0 0
Lambda[1]= 392
e= 0 0 98 0, LB= 982

Step 2a: <= 98 0 0 0 0 0 0 0 0 0 Lambdat2]= 60 e= 0 0 98 0, LB= 982

Step 2a: ϵ = 98 0 21 0 0 0 0 0 Lambda[3]= 49 e= 0 0 98 21, LB= 1003

Step 2a: ϵ = 98 0 21 120 0 0 0 0 Lambda[4]= 120 e= 0 120 98 21, LB= 1123

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Step 2a: ϵ = 98 0 21 120 49 0 0 0 Lambda[5]= 245 e= 0 120 147 21, LB= 1172

Step 2a: ϵ = 98 0 21 120 49 33 0 0 Lambda[6]= 165 e= 33 120 147 21, LB= 1205

Step 2a: ϵ = 98 0 21 120 49 33 30 0 Lambda[7]= 204 e= 33 120 177 21, LB= 1235

Step 2a: ϵ = 98 0 21 120 49 33 30 107 Lambda[8]= 107 e= 140 120 177 21, LB= 1342

Step 3: do not terminate. Set k← 2

Step 2a: ϵ = 0 0 21 120 49 33 30 107 Lambda[1]= 392 e= 140 120 177 21, LB= 1342

Step 2a: ϵ = 0 0 21 120 49 33 30 107 Lambda[2]= 60 e= 140 120 177 21, LB= 1342

Step 2a: ϵ = 0 0 0 120 49 33 30 107 Lambda(3)= 49 e= 140 120 177 21, LB= 1342

Step 2a: ϵ = 0 0 0 0 49 33 30 107 Lambda[4]= 120 e= 140 120 177 21, LB= 1342

Step 2a: ϵ = 0 0 0 0 0 33 30 107 Lambda(5)= 245 e= 140 120 177 21, LB= 1342

Step 2a: ϵ = 0 0 0 0 0 0 30 107 Lambda[6]= 165 e= 140 120 177 21, LB= 1342

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Step 2a: ϵ = 0 0 0 0 0 0 0 107 Lambda[7]= 204 e= 140 120 177 21, LB= 1342 Step 2a: ϵ = 0 0 0 0 0 0 0 0 Lambda[8]= 107 e= 140 120 177 21, LB= 1342

Lower bound= 1342, Upper bound= 1342 Duality gap = 0% No Duality Gap:

Upper bound achieved by Y = 1 1 1 0, i.e., opening plants 1 2 3

Lagrange multipliers

j	1	2	3	4	5	6	7	8
Lambda[j]	392	60	49	120	245	165	204	107

Summary of Results for Example Problem

optimal Solution of SPL = 1342 —
LP Relaxation of Model #1 = 1342 0%
Surrogate Relaxation of Model #3 = 1074 20%
LP Relaxation of Model #2 = 1031.38 23%