

# SEMI-MARKOV DECISION PROCESSES

**SMDP** is a generalization of the Markov Decision Process (**MDP**) where the **times between transitions** are allowed to be random variables whose distribution may depend upon

- the current state
- the action taken
- (possibly) the next state

**Inventory Replenishment:** Rather than review the inventory and make a replenishment decision at the end of each day, an automated system might make the decision *after each demand occurs*, an event which can happen at any time during the day.

**Taxicab Problem:** In the taxi-cab problem used earlier to illustrate MDP, *average reward per trip* was optimized (transitions correspond to passengers).

The *duration of the trips* will vary, depending upon source & destination, and time waiting for the next passenger can depend upon the action (cruising the street, waiting at a taxi stand, waiting for a radio call). More meaningful, therefore, would be optimizing the *average reward per unit time*.

## Notation:

$\tau_i^a$  = time that the system spends in state  $i$  before the next transition, if action  $a$  is selected.

$v_i^a \triangleq E[\tau_i^a]$  = expected duration of the time spent in state  $i$  if action  $a$  is selected.

$p_{ij}^a$  = probability that the next state is  $j$ , given that the current state is  $i$  and action  $a$  has been selected.

$c_i^a$  = expected total cost if action  $a$  is selected in state  $i$ .

## (Nonlinear) Programming Model for SMDP:

(Average Cost Criterion)

$$\begin{aligned} & \text{Minimize} \quad \sum_{i} \sum_{a} c_i^a x_i^a \\ & \text{subject to} \quad \sum_{i} \sum_{a} v_i^a x_i^a = 1 \\ & \quad \sum_{a} x_j^a = \sum_{i} \sum_{a} p_{ij}^a x_i^a \quad \text{for all states } j \\ & \quad x_i^a \geq 0 \quad \text{for all states } i \quad \text{and} \quad a \in A_i \end{aligned}$$

As in the case of MDP, we make a

**Unichain Assumption:**

Every single-stage decision rule  $R$  results in a transition probability matrix  $P^R$  for which the corresponding *discrete-time Markov chain* has a **single** recurrent set of states and a (possibly empty) set of transient states.

**Lemma** Let  $\mathbf{M}$  be a matrix and  $\mathbf{b}$  &  $\mathbf{d}$  vectors with the properties

$$(i) \quad \begin{cases} \mathbf{M}\mathbf{x} = \mathbf{0} \\ \mathbf{x} \geq \mathbf{0} \end{cases} \Rightarrow \mathbf{x} = \mathbf{0}$$

$$(ii) \quad \begin{cases} \mathbf{x} \geq \mathbf{0} \\ \mathbf{M}\mathbf{x} = \mathbf{b} \end{cases} \Rightarrow \mathbf{d}\mathbf{x} > \mathbf{0}$$

Make the **transformation**

$$u = \frac{x}{dx} \quad \text{and} \quad y = \frac{1}{dx}$$

Then there is a **one-to-one correspondence** between the solutions of the two systems

$$\begin{cases} \mathbf{M}\mathbf{x} = \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{cases} \quad \leftrightarrow \quad \begin{cases} \mathbf{M}\mathbf{u} = \mathbf{b}\mathbf{y} \\ \mathbf{d}\mathbf{u} = 1 \\ \mathbf{u} \geq \mathbf{0} \end{cases}$$

As a result of this lemma, the **nonlinear** (fractional) programming problem

$$\begin{aligned} & \text{Minimize} \quad \frac{cx}{dx} \\ & \text{subject to} \quad \mathbf{M}\mathbf{x} = \mathbf{b}, \\ & \quad \quad \quad \mathbf{x} \geq \mathbf{0} \end{aligned}$$

is equivalent to the **linear** programming problem

$$\begin{aligned} & \text{Minimize} \quad cu \\ & \text{subject to} \quad \mathbf{M}\mathbf{u} = \mathbf{b} \\ & \quad \quad \quad du = 1 \\ & \quad \quad \quad u \geq 0 \end{aligned}$$

**LP model for SMDP:** (*Average Cost Criterion*)

$$\begin{aligned} & \text{Minimize} \quad \sum_i \sum_a c_i^a u_i^a \\ & \text{subject to} \quad \sum_j u_j^a = \sum_i \sum_a p_{ij}^a u_i^a \quad \text{for all states } j \\ & \quad \quad \quad \sum_i \sum_a v_i^a u_i^a = 1 \\ & \quad \quad \quad u_i^a \geq 0 \quad \text{for all states } i \text{ and actions } a \in A_i \end{aligned}$$

**Notes:**

- If  $v_i^a \equiv 1$ , then of course this LP model is identical to that of the MDP given earlier, with  $x_i^a = u_i^a$ .
- As in the MDP case, the "steady state" equations above include one redundant constraint which can be eliminated.

We see, then, that the SMDP may be optimized by a rather small modification to the LP model, replacing  $x$  by  $u$  and

$$\sum_i \sum_a x_i^a = 1$$

by

$$\sum_i \sum_a v_i^a u_i^a = 1.$$

The objective of optimizing the **discounted** total cost may also be treated in SMDP, but the derivation is more complex and is not treated here.