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DECISION PROCESSES

SMDP is a generalization of the Markov Decision Process (MDP)

where the times between transitions are allowed to be random
variables whose distribution may depend upon

* the current state
* the action taken
* (possibly) the next state
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Inventory Replenishment: Rather than review the inventory and
make a replenishment decision at the end of each day, an
automated system might make the decision after each demand

occurs, an event which can happen at any time during the day.

Taxicab Problem: In the taxi-cab problem used earlier to
illustrate MDP, average reward per trip was optimized
(transitions correspond to passengers).

The duration of the trips will vary, depending upon source &
destination, and time waiting for the next passenger can depend
upon the action (cruising the street, waiting at a taxi stand,
waiting for a radio call). More meaningful, therefore, would be

optimizing the average reward per unit time.
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Notation:
77 = time that the system spends in state i before the next
transition, if action a is selected.

ViEE [Ti" J = expected duration of the time spent in state iif action

ais selected.
p; = probability that the next state is j, given that the current
state is i and action a has been selected.

¢ = expected total cost if action a is selected in state i
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(Nonlinear) Programming Model for SMDP:

(Average Cost Criterion)
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As in the case of MDP, we make a

Unichain Assumption:

Every single-stage decision rule R results in a transition
probability matrix P* for which the corresponding discrete-time
Markov chain has a single recurrent set of states and a (possibly

empty) set of transient states.
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Lemma Let M be a matrix and b & d vectors with the properties
. Mx=0
(i) =x=0
x20
. x=20
(i) =dx>0
Mx=b

Make the transformation

u—i and —L
dx Y dx

Then there is a one-to-one correspondence between the

solutions of the two systems

Mu = by
Mx=b
- du=1
x=0
u=0
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As a result of this lemma, the nonlinear (fractional)

programming problem

Minimize <~
dx
subject to Mx =b,
x=20
is equivalent to the linear programming problem
Minimize cu
subject to Mu =5
du=1

u=z0
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LP model for SMDP: (Average Cost Criterion)

Minimize z Z clu’
subject to Zu‘/’ = Zz piu;  for all states j
J a

Zvau,” =1

ui 20 for all states i and actions a4,
Notes:
o If v/ =1, then of course this LP model is identical to that of the
MDP given earlier, with x! =u;".
* As in the MDP case, the "steady state" equations above include

one redundant constraint which can be eliminated.
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We see, then, that the SMDP may be optimized by a rather small

modification to the LP model, replacing x by u and

RIE

by

ZZVfu,“ =1.

The objective of optimizing the discounted total cost may also be
treated in SMDP, but the derivation is more complex and is not

treated here.

SMDP-Intro page 9 ©D.L.Bricker, U. of Towa



