Separable Programming

Stochastic LP with SIMPLE Recourse

Consider the 2-stage stochastic LP with *simple* recourse in which only the right-hand-side is random.

Cf. Stochastic Programming, by Willem K. Klein Haneveld and Maarten H. van der Vlerk, Dept. of Econometrics & OR, University of Groningen, Netherlands

page

SLPw/Simple Re

D.L.Bricker

The second-stage variables

 $y(\varpi) = Tx - h(\varpi)$ represent surplus (if positive) or shortage (if negative) of the outputs.

For example,

- y_i⁺ = quantity of demand in excess of output (shortage of output) which must be acquired (at a cost q_i⁺ per unit),
- y_i⁻ = shortage of demand (excess of output which must be disposed of) (at a cost q_i⁻ per unit),

where it is assumed that $q_i^+ + q_i^- > 0$.

Warning: the terminology & notation is confusing!

D.L.Bricker

The stochastic LP may therefore be restated as

Minimize $cx + \sum_{i=1}^{n} Q_i(z_i)$ subject to Ax = bTx - z = 0 $x \ge 0$

If the probability distributions are discrete,

then $Q_i(z)$ is a **piecewise-linear convex** function.

This optimization problem can then be solved by an extension of LP usually called "separable programming".

If the probability distributions are *continuous*, then a piecewiselinear *approximation* of each $Q_i(y_i)$ can be constructed.

page

SLPw/Simple Recourse

SLPw/Simple Recours

D.L.Bricker

The inner linearization of the original nonlinear problem P is the LP :

$$\begin{aligned} Minimize \quad cx + \sum_{i=1}^{m_1} \sum_{j \in J_i} \hat{q}_i^j \lambda_i^j \\ \text{subject to} \quad Ax \ge b, \\ \sum_{j=1}^{m_1} T_{ij} x_j - \sum_{j \in J_i} \lambda_i^j \hat{z}_i^j = 0, \quad i = 1, 2, \dots m_2 \\ \sum_{j \in J_i} \lambda_j^j = 1, \quad i = 1, \dots m_2 \\ x \ge 0, \quad \lambda_i^j \ge 0 \quad \forall i = 1, \dots m_2 \& j \in J_i \end{aligned}$$

7

Note that the variables of this problem are x and λ .

$\begin{array}{l} \text{Minimize } cx + E_{\omega} \left[\sum_{i=1}^{m_{\mu}} \widetilde{Q}_{i}\left(y_{i}\right) \right] \\ \text{subject to } Ax \geq b \\ Tx - y(\omega) = h(\omega) \end{array}$

 $y_i = y_i^+ - y_i^-, y_i^+ \ge 0, y_i^- \ge 0 \quad \forall i = 1, \dots m_2$

(The first-stage constraints might be instead "=" or " \leq ".)

The right-hand-side $h(\omega)$ may be interpreted as the random demand for a set of **outputs**, with expected value h_{ω} .

page

D.L.Bricker

The expected second-stage cost is

 $x \ge 0$

$$Q_i(z) = E_{\omega} \left[\min_{y} \left\{ q_i^+ y_i^+ + q_i^- y_i^- : y_i^+ - y_i^- = \omega - z, y_i^+ \ge 0, y_i^- \ge 0 \right\} \right]$$

 $= q_i^+ G_i(z) + q_i^- H_i(z)$

where $G_i(z)$ is the expected surplus of demand (shortage of output):

$$G_{i}(z) = \int_{-\infty}^{+\infty} (t-z)^{+} F_{i}(t) dt = \int_{z}^{+\infty} (1-F_{i}(t)) dt$$

and $H_i(z)$ is the expected shortage of demand (surplus of output):

$$H_{i}(z) = \int_{-\infty}^{+\infty} (z-t)^{+} F_{i}(t) dt = \int_{-\infty}^{z} F_{i}(t) dt$$

If demand is random and a supply z is made available, $G_i(z)$ is

the expected demand in excess of the supply, i.e., the expected deficit in the supply. Note the danger of confusion in the terminology!

D.L.Bricker

SI Pur/Simple Re

Separable Programming

Suppose that for each output i, a set of J_i grid points is given,

Represent each second-stage variable z_i as a *convex combination* of these grid points:

$$z_i = \sum_{j \in J_i} \lambda_i^j \hat{z}_i^j \quad \text{where} \quad \sum_{j \in J_i} \lambda_i^j = 1, \ \lambda_i^j \ge 0$$

and $Q_t(z_i)$ as the corresponding convex combination of function values:

$$Q_i(z_i) \approx \sum_{j \in J_i} \lambda_i^j \hat{q}_i^j$$
, where $\hat{q}_i^j \equiv Q_i(\hat{z}_i^j)$

D.L.Bricker

SLPw/Simple Recours

SLPw/Simple Re

The m₂ convexity constraints are of type "**GUB**" (*Generalized Upper Bounds*), which are handled by many LP-solvers without increasing the size of the basis matrix.

Hence, when GUB facility is available, the *number of constraints* in the tableau is *identical* to that of the *expected value* problem (i.e., with random variables replaced by their expected values)!

The computational effort should therefore be of the same order of magnitude as that of the expected value problem!

First-Stage						Recourse								
rhe	. 1 .	2 2 4	5 6 7	0	1	2 3	4	5	6 '	7 0	0	10	11 1	2 13
96.3	0 0	0 0 0	2 2 0	1	16.5	1.5 0	7.5	5 61.5	8.0	12	76	9.2	1.2	0 10
3	0 0	0 0 0	0 1	1	-7	2 0	2	11	-4 0	4	12	6	-2	0 2
1	0 0 0	0 0 0	0 0 0	0	0	0 0	0	0	1 1	1	1	0	0	0 0
6	0 0 1	101	0 1 0	1	0	0 0	0	0	-4 0	4	12	0	0	0 0
4	0 0	1 0 0	1 0 0	0	0	0 0	0	0	4 0	$^{-4}$	-12	0	0	0 0
6	0 0 0	010) 1 0	0	0	0 0	0	0	0 0	0	0	6	2	0 -2
1	0 0 0	0 0 0 1	0 0 0	0	1	1 1	1	1	0 0	0	0	0	0	0 0
1) 1 3	100	0 1 0	1	7	2 0	-2	-11	4 0	-4	-12	0	0	0 0
1	0 0 0	0 0 0	0 0 0	0	0	0 0	0	0	0 0	0	0	1	1	1 1