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Consider the 2-stage stochastic LP with simple recourse in

which only the right-hand-side is random.

Cf. Stochastic Programming, by Willem K. Klein Haneveld and Maarten H.
van der Vlerk, Dept. of Econometrics & OR, University of Groningen,
Netherlands
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(The  first-stage constraints might be instead "=" or "≤".)

The right-hand-side ( )h ω may be interpreted as the random

demand for a set of outputs, with expected value hω .
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The second-stage variables

( ) ( )y Tx hω ω= −

represent surplus (if positive) or shortage (if negative) of the

outputs. 

For example, 

• iy
+ = quantity of demand in excess of output (shortage of

output) which must be acquired (at a cost iq
+ per unit),

• iy
− = shortage of demand (excess of output which must be

disposed of)   (at a cost iq
− per unit),

where it is assumed that 0i iq q+ −+ > .

Warning:  the terminology & notation is confusing!
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The expected second-stage cost is

( ) { }min   : , 0, 0i i i i i i i i iy
Q z E q y q y y y z y yω ω+ + − − + − + − = + − = − ≥ ≥  

( ) ( )i i i iq G z q H z+ −= +

where ( )iG z is the expected surplus of demand (shortage of
output):
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−∞
= − = −∫ ∫

and ( )iH z is the expected shortage of demand (surplus of output):

( ) ( ) ( ) ( )
z
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+∞ +

−∞ −∞
= − =∫ ∫

If demand is random and a supply z is made available, ( )iG z is

the expected demand in excess of the supply, i.e.,
the expected deficit in the supply.

Note the danger of confusion in the terminology!
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The stochastic LP may therefore be restated as
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If the probability distributions are discrete,

then ( )iQ z is a piecewise-linear convex function. 

This optimization problem can then be solved by an extension of

LP usually called "separable programming".

If the probability distributions are continuous, then a piecewise-

linear approximation of each ( )i iQ y can be constructed.
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Suppose that for each output i,  a set of Ji grid points is given,
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Represent each second-stage variable iz as a convex combination

of these grid points:
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The inner linearization of the original nonlinear problem P is the

LP :
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Note that the variables of this problem are x and λ.
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The m2 convexity constraints are of type "GUB" (Generalized

Upper Bounds), which are handled by many LP-solvers

without increasing the size of the basis matrix.

Hence, when GUB facility is available, the number of constraints

in the tableau is identical to that of the expected value

problem (i.e., with random variables replaced by their

expected values)!

The computational effort should therefore be of the same order of

magnitude as that of the expected value problem!
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This is sometimes referred to as

the "Lambda" separable programming formulation, with

the new variables associated with the grid points and

convexity (GUB) constraints added.

An alternative formulation is

the "Delta" separable formulation, with

a new variable associated with each of the intervals between

grid points, and

simple upper bounds (SUB) constraints added.

Computational efforts of the two formulations should be

comparable, and results will be equivalent.
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Example:

Stochastic Transportation Problem with Simple Recourse

Consider the small example with

• two sources, each with supply = 10, and

• three destinations, each with random demand.

Dstn #1 Dstn #2 Dstn #3

Source #1 3 5 6

Source #2 2 4 7

Dstn #1 Dstn #2 Dstn #3

q + 6 7 8

q − 3 3 6
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Discrete Probability Distributions
Random demand #1, Mean = 7, # points = 3

i:  1    2   3   
d:  5    7   9   
p:  0.25 0.5 0.25 

--------------------
The piecewise-linear function Q1(z), with 1 6q+ = & 1 3q− = :
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( ) ( )

( ) ( )

( ) ( )

0.25 6 5 3 5

0.5 6 7 3 7

0.25 6 9 3 9

z z

z z

z z

+ +

+ +

+ +

 = − + − 
 + − + − 
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That is,
( ) [ ] ( ) ( )1 5 0.25 0 0 0.5 6 7 5 0 0.25 6 9 5 0 12Q    = + + − + + − + =   
( ) ( ) [ ] ( )1 7 0.25 0 3 7 5 0.5 0 0 0.25 6 9 7 0 4.5Q    = + − + + + − + =   
( ) ( ) ( ) [ ]1 9 0.25 0 3 9 5 0.5 0 3 9 7 0.25 0 0 6Q    = + − + + − + + =   

The piecewise-linear curve joins the points (5,12), (7,4.5), and

(9,6), with slopes 1 6q+− = − on the left and 1 3q−+ = + on the right.
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Random demand #2, Mean = 6, # points = 2
i:  1   2  
d:  4   8  
p:  0.5 0.5

--------------------

The Piecewise-Linear function Q2(z)  with 2 7q+ = & 2 3q− = :
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Random demand #3, Mean = 7, # points = 4
i:  1   2   3    4  
d:  4   6   8   10  
p:  0.1 0.4 0.4  0.1 

-------------------------
The piecewise-linear function Q3(z) with 3 3q+ = & 3 7q− = :
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Initial LP Tableau

rhs -z 1 2 3 4 5 6 7 8    1  2   3 4  5   6  7  8   9 10 11  12   13  14  15
0  1 3 5 6 2 4 7 0 0   42 12 4.5 6  33 42 14  6  30 56 24 10.8 8.8  18  78

10  0 1 1 1 0 0 0 1 0    0  0  0  0   0  0  0  0   0  0  0  0    0    0   0
10  0 0 0 0 1 1 1 0 1    0  0  0  0   0  0  0  0   0  0  0  0    0    0   0
0  0 1 0 0 1 0 0 0 0    0 ¯5 ¯7 ¯9 ¯18  0  0  0   0  0  0  0    0    0   0
0  0 0 1 0 0 1 0 0 0    0  0  0  0   0  0 ¯4 ¯8 ¯16  0  0  0    0    0   0
0  0 0 0 1 0 0 1 0 0    0  0  0  0   0  0  0  0   0  0 ¯4 ¯6   ¯8  ¯10 ¯20
1  0 0 0 0 0 0 0 0 0    1  1  1  1   1  0  0  0   0 0  0  0    0    0   0
1  0 0 0 0 0 0 0 0 0    0  0  0  0   0  1  1  1   1  0  0  0    0    0   0
1  0 0 0 0 0 0 0 0 0    0  0  0  0   0  0  0  0   0  1  1  1    1    1   1

Compare the size of this tableau with that of the LP with the second-stage
variables (yk) for each scenario!
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Solution of LP: Objective: 96.3

First stage: nonzero variables
i   variable  value   
1  X11         1 
3  X13         6 
4  X21         6 
5  X22         4 

Multipliers in convex combinations
i   Grid #  Grid pt  Multipliers 
1     3       7         1 
2     7    4         1 
3    12       6         1 

Second stage primal & dual solutions:
i   output  value   v     w  
1  AAA        7    3   25.5 
2  BBB        4    5 34.0 
3  CCC        6    6   46.8 

v & w are dual variables for 2nd-stage and convexity rows,
respectively.
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Optimal  LP  Tableau

rhs -z 1  2 3 4 5 6 7 8   1    2  3 4     5    6 7 8   9 10 11 12 13
¯96.3 1 0 0 0 0 0  2 0  1   16.5 1.5 0  7.5 61.5  8 0 12  76  9.2  1.2 0 10

3   0 0  0 0 0 0  0 1  1   ¯7  ¯2   0  2   11   ¯4 0  4  12 ¯6   ¯2   0  2
1   0 0  0 0 0 0  0 0  0    0   0   0  0    0    1 1  1   1  0    0   0  0
6   0 0 ¯1 0 1 0  1 0  1    0 0   0  0    0   ¯4 0  4  12  0    0   0  0
4   0 0  1 0 0 1  0 0  0    0   0   0  0    0    4 0 ¯4 ¯12  0    0   0  0
6   0 0  0 1 0 0  1 0  0    0   0   0  0    0    0 0  0   0  6    2   0 ¯2
1   0 0  0 0 0 0  0 0  0    1   1   1  1    1    0 0 0   0  0    0   0  0
1   0 1  1 0 0 0 ¯1 0 ¯1    7   2   0 ¯2  ¯11    4 0 ¯4 ¯12  0    0   0  0
1   0 0  0 0 0 0  0 0  0    0   0   0  0    0    0 0  0   0  1    1   1  1


