

This is sometimes referred to as
the "Lambda" separable programming formulation, with the new variables associated with the grid points and convexity (GUB) constraints added.

An alternative formulation is
the "Delta" separable formulation, with
a new variable associated with each of the intervals between grid points, and
simple upper bounds (SUB) constraints added.
Computational efforts of the two formulations should be comparable, and results will be equivalent.

SLPwSSimple Recourse

\qquad

Discrete Probability Distributions

Random demand \#1, Mean = 7, \# points = 3
$\begin{array}{llll}\text { i: } & 1 & 2 & 3 \\ \text { d: } & 5 & 7 & 9\end{array}$
p: $\begin{array}{lllll}0.25 & 0.5 & 0.25\end{array}$
The piecewise-linear function $\mathrm{Q}_{1}(z)$, with $q_{1}^{+}=6 \& q_{1}^{-}=3$:

$$
\begin{aligned}
\bar{Q}_{1}(z) & =q_{1}^{+} \sum_{j} p_{j}\left(d_{j}-z\right)^{+}+q_{1}^{-} \sum_{j} p_{j}\left(z-d_{j}\right)^{+} \\
& =\sum_{j} p_{j}\left[q_{i}^{+}\left(d_{j}-z\right)^{+}+q_{i}^{-}\left(z-d_{j}\right)^{+}\right]
\end{aligned}
$$

Example:

Stochastic Transportation Problem with Simple Recourse Consider the small example with

- two sources, each with supply $=10$, and
- three destinations, each with random demand.

Shipping		Dstn \#1	Dstn \#2	Dstn \#3
Cost	Source \#1	3	5	6
	Source \#2	2	4	7

Surplus \&		Dstn \#1	Dstn \#2	Dstn \#3
Shortage	\boldsymbol{q}^{+}	6	7	8
Costs	\boldsymbol{q}^{-}	3	3	6

D.L.Briker

$=$

That is,
$Q_{1}(5)=0.25[0+0]+0.5[6(7-5)+0]+0.25[6(9-5)+0]=12$
$Q_{1}(7)=0.25[0+3(7-5)]+0.5[0+0]+0.25[6(9-7)+0]=4.5$
$Q_{1}(9)=0.25[0+3(9-5)]+0.5[0+3(9-7)]+0.25[0+0]=6$

The piecewise-linear curve joins the points $(5,12),(7,4.5)$, and $(9,6)$, with slopes $-q_{1}^{+}=-6$ on the left and $+q_{1}^{-}=+3$ on the right.

```
Random demand \#2, Mean \(=6\), \# points \(=2\)
```

$$
\begin{array}{lll}
i: & 1 & 2 \\
d: & 4 & 8 \\
p: & 0.5 & 0.5
\end{array}
$$

The Piecewise-Linear function $\mathrm{Q}_{2}(\mathrm{z})$ with $q_{2}^{+}=7 \& q_{2}^{-}=3$:

Compare the size of this tableau with that of the LP with the second-stage variables $\left(y_{k}\right)$ for each scenario!

Random demand \#3, Mean $=7$, \# points $=$

i:	1	2	3	4
d:	4	6	8	10
p:	0.1	0.4	0.4	0.

The piecewise-linear function $\mathrm{Q}_{3}(z)$ with $q_{3}^{+}=3 \& q_{3}^{-}=7$:

\qquad
D.LBricke

Solution of LP: Objective: 96.3
First stage: nonzero variables

i	variable	value
1	X11	1
3	X13	6
4	X21	6
5	X22	4

Multipliers in convex combinations

i	Grid \#	Grid pt	Multipliers
1	3	7	1
2	7	4	1
3	12	6	1

Second stage primal \& dual solutions:

i	output	value	v	W
1	AAA	7	3	25.5
2	BBB	4	5	34.0
3	CCC	6	6	46.8

$v \& w$ are dual variables for $2^{\text {nd }}$-stage and convexity rows, respectively.

Optimal LP Tableau

rhs	-z	1	2	34	5	6	7	8	1	2	3	4	5		7		9	10	111	2	
96.3	1	0	0	00	0	2	0	1	16.5	1.5	0	7.5	61.5	8	0	12	76	9.2	1.2	0	10
3	0	0	0	00	0	0	1	1	7	2	0	2	11	4	0	4	12	6	2	0	
1	0	0	0	00	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	
6	0	0	1	01	0	1	0	1	0	0	0	0	0	4	0	-4	-12	0	0	0	0
4	0	0	1	00	1	0	0	0	0	0	0	0	0	4	0	4	-12	0	0	0	- 0
6	0	0	0	10	0	1	0	0	0	0	0	0	0	0	0	0	0	6	2	0	
1	0	0	0	00	0	0	0	-	1	1	1	1	1	0	0	0	- 0	0	0	0	0
1	0	1	1	00	0	-1	0	-1	7	2	0	2	${ }^{-11}$	4	0	-4	-12	0	0	0	0
1	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

SLPw/Simple Recourse
page
17

