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Consider the 2-stage stochastic LP with simple recourse in

which only the right-hand-sides are random, and are continous

random variables.
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(The  first-stage constraints might be instead "=" or "≤".)

Here, The expected second-stage cost is

( ) { }min   : , 0, 0i i i i i i i i iy
Q z E q y q y y y z y yω ω+ + − − + − + − = + − = − ≥ ≥  

( ) ( )i i i iq G z q H z+ −= +

where ( )iG z is the expected surplus: ( ) ( ) ( )i iG z t z F t dt
+∞ +

−∞
= −∫

and ( )iH z is the expected shortage: ( ) ( ) ( )i iH z z t F t dt
+∞ +

−∞
= −∫
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( )iQ z is a finite, convex, continuous function of a single variable,

and may be approximated by a piecewise-linear convex function

as in separable programming:

Given, for each output i,  a set of Ji grid points and the

corresponding values of ( )iQ z :
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Represent each variable iz and the function value ( )iQ z as a

convex combination of these grid points and function values:
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The inner-linearization of the original nonlinear problem P is the

LP :
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Note that the variables of this problem are x and λ .
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Because the piecewise−linear approximation is an overestimate

of ( )iQ z , the optimal solution of the approximating problem

provides an upper bound on the solution of the exact problem!

Using a "finer" grid, with more grid points, improves the

approximation, but increases the computational effort. 

"Grid Refinement" is an iterative column-generating method for

refining the grids, using dual information available after solving

the current approximating separable programming LP
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Suppose that we have solved the LP to get a primal solution � ,x z 
 
�

and dual solution � l, ,u v w 
 
� where �u ,v� , and lw correspond to

• the first stage constraints, Ax b≥

• the second stage constraints,
1
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j j J
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= ∈

− =∑ ∑ � and

• the convexity constraints, 1,
i

j
i

j J
λ

∈

=∑

respectively.

What new grid points might be introduced in order

to best improve the approximation?
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A prospective grid point iz� for iz would yield a new

column for the LP, with elements of zero in all rows

except:

• iz−� in row i of the second-stage constraints,

• 1 in row i of the set of convexity constraints

The reduced cost of this column would be

( ) [ ] ( )
0

0, ,i i ii i i i i

i

Q z v w ze Q z v z w
e

 
 − − = + − 
  

� � �

where ei is the ith unit vector. 
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It is reasonable to choose the grid point so as to minimize this

reduced cost, i.e.,

( )
i

i i i i iz
Minimize Q z v z w+ −

This is an unconstrained one-dimensional nonlinear minimization!
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For each i=1, … m2, find the optimal grid point. 

If the minimum reduced cost is negative (or less than some

tolerance), the column should be generated for the grid point

and added to the LP tableau. (The minimum reduced cost

should never be positive, since a column for an existing grid

point is basic and has zero reduced cost!)

The sum of the m2 minimum reduced costs provides a bound on

the gap between the current approximate solution and the

exact solution, and can be used in the termination criterion for

the grid-refinement algorithm!
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Minimizing the Reduced Cost function

( )
i

i i i i iz
Minimize Q z v z w+ −

Case I:   the random variable ω has continuous distribution F.

The optimal solution is achieved at a stationary point z

such that

( ) ( ) 0i i i i
d dQ z v z w Q z v
dz dz

 + − = + = 

Since
( ) ( ) ( )Q z q q q F z+ + −′ = − + +

Therefore z must satisfy

( ) ( ) 0q q q F z v+ + −− + + + = ⇒ ( ) q vF z
q q

+

+ −

−
=

+
Note the similarity to the optimal solution of the Newsboy Problem: 

q+ ←→ selling price, -q− ←→ salvage value, v ←→ acquisition cost
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Case II:   the random variable ω has discrete distribution

{ } ,   1,s
sP p s Sω ω= = = …

The  optimal solution is achieved at a point y such that 0

is a subdifferential of the reduced cost:

( ) ( )0 Q z vz w v Q z ∈ ∂ + − ⇒ − ∈ ∂ 

where ( )Q z∂ is the interval

( ) { } ( ) { },q q q P z q q q P zω ω+ + − + + − − + + < − + + ≤ 

That is,

( ) { } ( ) { }q q q P z v q q q P zω ω+ + − + + −− + + < ≤ − ≤ − + + ≤

⇒ { } { }q vP z P z
q q

ω ω
+
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Example:

Stochastic Transportation Problem with Simple Recourse

Consider the small example with

• two sources, each with supply = 10, and

• three destinations, each with random demand.

Dstn #1 Dstn #2 Dstn #3

Source #1 3 5 6

Source #2 2 4 7

Dstn #1 Dstn #2 Dstn #3

q + 4 3 6

q − 5 5 8
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Dstn #1 Dstn #2 Dstn #3

µ 6 7 4

σ 2 2 1
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Initially, each ( )iQ z is approximated by a three-point function,
with grid points at µ and 2µ σ± .

First approximation of ( )1Q z :

#   z    Q(z)  safety factor 
1   6   7.181       0 
2   2  20.156      ¯2 
3  10  16.156       2
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Approximation of ( )2Q z

#    z     Q(z)  safety factor 
4    7   6.3831       0 
5    3  20.1383      ¯2 
6   11  12.1383       2 
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Approximation of ( )3Q z

#    z     Q(z)  safety factor 
7    4   5.5852       0 
8    2  16.1210      ¯2 
9    6  12.1210       2 
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The initial tableau is:

rhs -z 1 2 3 4 5 6 7 8    1     2      3      4     5      6      7     8   9
0  1 3 5 6 2 4 7 0 0  7.181 16.16 20.16 6.383 12.14 20.14 5.585 12.12 16.12

10  0 1 1 1 0 0 0 1 0   0      0     0     0     0     0     0     0     0
10  0 0 0 0 1 1 1 0 1   0      0     0   0     0     0     0     0     0
0  0 1 0 0 1 0 0 0 0  ¯6     ¯2   ¯10     0     0     0     0     0     0
0  0 0 1 0 0 1 0 0 0   0      0     0    ¯7    ¯3   ¯11     0     0     0
0  0 0 0 1 0 0 1 0 0   0      0     0     0     0     0    ¯4    ¯2 0
1  0 0 0 0 0 0 0 0 0   1      1     1     0     0     0     0     0    ¯6
1  0 0 0 0 0 0 0 0 0   0      0     0     1     1     1     0     0     0
1  0 0 0 0 0 0 0 0 0   0      0     0     0     0     0     1     1     1
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iteration 1
¯¯¯¯¯¯¯¯¯¯¯

Objective: 67.44

First stage: nonzero variables
i   variable  value 
3  X13           2 
4  X21           6 
5  X22           3 

Multipliers in convex combinations

i   Col #  Grid pt  Multipliers 
1      1      6            1 
2      5      3            1 
3      8      2            1 

Second stage primal & dual solutions:
i   output  value   v       w 
1    AAA      6     2    19.181 
2    BBB      3     4    32.138 
3    CCC      2     6    28.121 
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Refining the Grid:
For each random variable, solve a newsboy-type problem:

Demand #1: Using the dual variable 1 2v = , we solve the "newsboy
problem" by computing

( )1 1 11 1
1 1 1

1 1

4 2 0.22222 4.47457
4 5

q vz F F F
q q

+
− − −

+ −

 − − = = = =   + +  
�
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Demand #2: Using the dual variable 2 4v = , we compute

( )1 1 12 2
2 2 2

2 2

3 4 0.125
3 5

q vz F F F
q q

+
− − −

+ −

 − − = = = −   + +  
�

This indicates that there is no stationary point of the reduced cost
function, but that it descends as one goes to the left-- we
therefore choose a new grid point at zero!
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Demand #3: Using the dual variable 2 4v = , we compute

( )1 1 13 3
3 3 3

3 3

6 6 0
6 8

q vz F F F
q q

+
− − −

+ −

 − − = = =   + +  
�

Again, there is no stationary point minimizing the reduced cost
function.

In this case, the new grid point z = 0.49206 was selected.
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Refined Grid:
i   old z        p   grid pt    Q(z)      RC  
1     6     0.22222  4.47457   8.397 ¯1.83479 
2     3    ¯0.12500  0.00000  21.001 ¯3.13732 
3  2     0.00000  0.49206  21.048 ¯0.12019 

Sum of negative reduced costs: ¯5.0923 = bound on gap

The current LP optimum is 67.44 (an upper bound),

and so 67.44-5.0923 = 62.35 is a lower bound on the

optimum of the exact problem.
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New piecewise-linear approximations of ( )iQ z
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iteration 2
¯¯¯¯¯¯¯¯¯¯¯

Solution of LP:  Objective: 62.348

First stage: nonzero variables
i   variable    value
3   X13       0.49206 
4   X21       4.47457 

Multipliers in convex combinations

i   Col #  Grid pt  Multipliers  
1     10   4.4746            1 
2   5 11      3 0          0 1 
3     12  0.49206            1 

Second stage primal & dual solutions:
i   output    value     v       w  
1   AAA     4.47457  2.0000  17.346 
2   BBB     0.00000  2.9542  21.001 
3   CCC     0.49206  6.0000  24.001 

(v = dual variables for 2nd stage constraints,
w are for convexity constraints)             
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Refined Grid:
i    old z      p grid pt     Q(z)      RC 
1  4.47457  0.2222222  4.47453   8.3971  ¯9.3110E¯10 
2  0.00000  0.0057218  1.50000  16.5138  ¯5.5814E¯2  
3  0.49206  0.0000000  0.68571  19.8875   9.8568E¯4  

Sum of negative reduced costs: ¯0.055814 = bound on gap

Currently  upper bound = 62.348
lower bound = 62.348 -0.0558 = 62.29
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iteration 3
Solution of LP:  Objective: 62.348
First stage: nonzero variables

i   variable    value
3   X13       0.49206 
4   X21       4.47457 

Multipliers in convex combinations
i   Col #  Grid pt  Multipliers
1      10   4.4746 1 
2   11 14  0   1.5          1 0 
3      12  0.49206            1 

Second stage primal & dual solutions:
i   output    value     v       w  
1  AAA     4.47457 2.0000  17.346 
2  BBB     0.00000 2.9914  21.001 
3  CCC     0.49206 6.0000  24.001 

Refined Grid:
i    old z         p   grid pt     Q(z)          RC 
1  4.47457  0.2222222  4.47453 8.3971  ¯9.3109E¯10 
2  0.00000  0.0010706  0.73528  18.7981  ¯3.3318E¯3  
3  0.49206  0.0000000  0.68571  19.8875   9.8568E¯4  

Sum of negative reduced costs: ¯0.0033318 = bound on gap
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iteration 4
Solution of LP: Objective: 62.348
First stage: nonzero variables

i   variable    value 
3   X13       0.49206 
4   X21       4.47457 

Multipliers in convex combinations

i   Col #    Grid pt  Multipliers 
1      10     4.4746            1 
2   11 16  0 0.73528          1 0 
3      12    0.49206            1 

Second stage primal & dual solutions:
i   output    value    v       w  
1  AAA     4.47457 2.000  17.346 
2  BBB     0.00000 2.996  21.001 
3  CCC     0.49206 6.000  24.001 


