| Generalized Linear Programming <br> Stochastic li with sMMrle Recourse <br> Consider the 2 -stage stochastic LP with simple recourse in which only the right-hand-sides are random, and are continous random variables. | D.L.Bricker $\text { P: } \begin{gathered} \text { Minimize } c x+\sum_{i=1}^{m_{2}} Q_{i}\left(z_{i}\right) \\ \text { subject to } A x \geq b \\ T x-z=0 \\ x \geq 0 \end{gathered}$ <br> (The first-stage constraints might be instead " $=$ " or " $\leq$ ".) <br> Here, The expected second-stage cost is $\begin{gathered} Q_{i}(z)=E_{\omega}\left[\min _{y}\left\{q_{i}^{+} y_{i}^{+}+q_{i}^{-} y_{i}^{-}: y_{i}^{+}-y_{i}^{-}=\omega-z, y_{i}^{+} \geq 0, y_{i}^{-} \geq 0\right\}\right] \\ =q_{i}^{+} G_{i}(z)+q_{i}^{-} H_{i}(z) \end{gathered}$ <br> where $G_{i}(z)$ is the expected surplus: $G_{i}(z)=\int_{-\infty}^{+\infty}(t-z)^{+} F_{i}(t) d t$ and $H_{i}(z)$ is the expected shortage: $H_{i}(z)=\int_{-\infty}^{+\infty}(z-t)^{+} F_{i}(t) d t$ |
| :---: | :---: |
| D.L.Bricker <br> $Q_{i}(z)$ is a finite, convex, continuous function of a single variable, and may be approximated by a piecewise-linear convex function as in separable programming: <br> Given, for each output $i$, a set of $J_{i}$ grid points and the corresponding values of $Q_{i}(z)$ : $\left\{\hat{z}_{i}^{j}\right\}_{j \in J_{i}} \text { and }\left\{\hat{q}_{i}^{j}\right\}_{j \in J_{i}} \text {, where } \hat{q}_{i}^{j} \equiv \mathrm{Q}_{\mathrm{i}}\left(\hat{z}_{i}^{j}\right)$ <br> Represent each variable $z_{i}$ and the function value $Q_{i}(z)$ as a convex combination of these grid points and function values: $z_{i}=\sum_{j \in J_{i}} \lambda_{i}^{j} z_{i}^{j} \text { and } Q_{i}\left(z_{i}\right) \approx \sum_{j \in J_{i}} \lambda_{i}^{j_{i}^{j}} \text {, where } \sum_{j \epsilon J_{i}} \lambda_{i}^{j}=1, \lambda_{i}^{j} \geq 0$ | D.L.Bricker <br> The inner-linearization of the original nonlinear problem P is the LP : <br> Note that the variables of this problem are $x$ and $\lambda$. |
| Because the piecewise-linear approximation is an overestimate of $Q_{i}(z)$, the optimal solution of the approximating problem provides an upper bound on the solution of the exact problem! <br> Using a "finer" grid, with more grid points, improves the approximation, but increases the computational effort. <br> "Grid Refinement" is an iterative column-generating method for refining the grids, using dual information available after solving the current approximating separable programming LP | Grid Refinement <br> Suppose that we have solved the LP to get a primal solution $[\hat{x}, \hat{z}]$ and dual solution $[\hat{u}, \hat{v}, \hat{w}]$ where $\hat{u}, \hat{v}$, and $\hat{w}$ correspond to <br> - the first stage constraints, $A x \geq b$ <br> - the second stage constraints, $\sum_{j=1}^{n_{1}} T_{i j} x_{j}-\sum_{j \in J_{i}} \lambda_{i}^{j} \hat{z}_{i}^{j}=0$ and <br> - the convexity constraints, $\sum_{j \in J_{i}} \lambda_{i}^{j}=1$, respectively. <br> What new grid points might be introduced in order to best improve the approximation? |
| D.L.Bricker <br> A prospective grid point $\hat{z}_{i}$ for $z_{i}$ would yield a new column for the LP, with elements of zero in all rows except. <br> - $-\hat{z}_{i}$ in row $i$ of the second-stage constraints, <br> - 1 in row $i$ of the set of convexity constraints <br> The reduced cost of this column would be $Q_{i}\left(\hat{z}_{i}\right)-[0, v, w]\left[\begin{array}{c} 0 \\ -z e_{i} \\ e_{i} \end{array}\right]=Q_{i}\left(\hat{z}_{i}\right)+v_{i} \hat{z}_{i}-w_{i}$ <br> where $e_{i}$ is the $i^{\text {th }}$ unit vector. | D.L.Bricker <br> It is reasonable to choose the grid point so as to minimize this reduced cost, i.e., $\underset{z_{i}}{\operatorname{Minimize}} Q_{i}\left(z_{i}\right)+v_{i} z_{i}-w_{i}$ <br> This is an unconstrained one-dimensional nonlinear minimization! |

For each $i=1, \ldots m_{2}$, find the optimal grid point.
If the minimum reduced cost is negative (or less than some tolerance), the column should be generated for the grid point and added to the LP tableau. (The minimum reduced cost should never be positive, since a column for an existing grid point is basic and has zero reduced cost!)

The sum of the $m_{2}$ minimum reduced costs provides a bound on the gap between the current approximate solution and the exact solution, and can be used in the termination criterion for the grid-refinement algorithm!
D.L.Brickr

## Minimizing the Reduced Cost function

$$
\text { Minimize } Q_{i}\left(z_{i}\right)+v_{i} z_{i}-w_{i}
$$

Case I: the random variable $\omega$ has continuous distribution F.
The optimal solution is achieved at a stationary point $z$ such that

$$
\frac{d}{d z}\left[Q_{i}(z)+v_{i} z-w_{i}\right]=\frac{d}{d z} Q(z)+v_{i}=0
$$

Since

$$
Q^{\prime}(z)=-q^{+}+\left(q^{+}+q^{-}\right) F(z)
$$

Therefore $z$ must satisfy

$$
-q^{+}+\left(q^{+}+q^{-}\right) F(z)+v=0 \Rightarrow F(z)=\frac{q^{+}-v}{q^{+}+q^{-}}
$$

Note the similarity to the optimal solution of the Newsboy Problem: $q^{+} \longleftrightarrow$ selling price, $-q^{-} \longleftrightarrow$ salvage value, $v \longleftrightarrow$ acquisition cost
$\qquad$

## Example:

Stochastic Transportation Problem with Simple Recourse
Consider the small example with

- two sources, each with supply $=10$, and
- three destinations, each with random demand.

| Shipping |  | Dstn \#1 | Dstn \#2 | Dstn \#3 |
| :---: | :---: | :---: | :---: | :---: |
| Cost | Source \#1 | 3 | 5 | 6 |
|  | Source \#2 | 2 | 4 | 7 |

That is,

$$
\begin{gathered}
-q^{+}+\left(q^{+}+q^{-}\right) P\{\omega<z\} \leq-v \leq-q^{+}+\left(q^{+}+q^{-}\right) P\{\omega \leq z\} \\
\Rightarrow P\{\omega<z\} \leq \frac{q^{+}-v}{q^{+}+q^{-}} \leq P\{\omega \leq z\}
\end{gathered}
$$

The optimal solution is achieved at a point $y$ such that 0 is a subdifferential of the reduced cost

$$
0 \in \partial[Q(z)+v z-w] \Rightarrow-v \in \partial Q(z)
$$

where $\partial Q(z)$ is the interval

$$
\left[-q^{+}+\left(q^{+}+q^{-}\right) P\{\omega<z\},-q^{+}+\left(q^{+}+q^{-}\right) P\{\omega \leq z\}\right]
$$

page
D.L.Bricker




Initially, each $Q_{i}(z)$ is approximated by a three-point function, with grid points at $\mu$ and $\mu \pm 2 \sigma$

First approximation of $Q_{1}(z)$ :



Approximation of $Q_{2}(z)$




