D.LBricker

General
Stochastic LP with SIMPLE Recourse

Consider the 2-stage stochastic LP with simple recourse in
which only the right-hand-sides are random, and are continous

random variables.

SLPw/Simple Recourse page
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P: Minimize cx+2Q,(Z,)
i=1

subject to Ax>bh

Tx-z=0
x>0
(The first-stage constraints might be instead "=" or "<".)

Here, The expected second-stage cost is
Q,(Z):Em[mjn (@ v +a v oy = :w—z,yTZO,yTZO}]
=4/G(z)+q H,(2)
where G,(z) is the expected surplus: G(z) :I:(t—zyF‘(t) dt

and H,(z) is the expected shortage: H,(z):'[:(z—th,(t) dt
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Q,.(z) is a finite, convex, continuous function of a single variable,

and may be approximated by a piecewise-linear convex function

as in separable programming:

Given, for each output i, a set of J; grid points and the

corresponding values of Q,(z):
~J ~j ~J ~J
{z,»} and {q,} , where ¢, EQ‘(z, )
JjeJ, Jjed;
Represent each variable z, and the function value Q,(z) as a

convex combination of these grid points and function values:

z :Zl,’;,/ and Ql(z‘)zz;vfz},,, where Y 4/ =1, />0
Jjel;

Jed; Jed;
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The inner-linearization of the original nonlinear problem P is the
LP:

m o
Minimize cx+ Z z q; A

(=

subject to  Ax>b,
ST, -3 4z =0, i=12,..m,
j=1 jel;
S =1, i=l.m,

Jel

x>0, A/>0 Vi=l..m&jeJ,

Note that the variables of this problem are x and A.
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Because the piecewise-linear approximation is an overestimate
of 0,(z), the optimal solution of the approximating problem

provides an upper bound on the solution of the exact problem!

Using a "finer" grid, with more grid points, improves the

approximation, but increases the computational effort.
"Grid Refinement"is an iterative column-generating method for

refining the grids, using dual information available after solving

the current approximating separable programming LP
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Grid Refinement

Suppose that we have solved the LP to get a primal solution I:;c,;]

and dual solution [1;,\3,‘}} where 11,;, and ;v correspond to

. the first stage constraints, Ax>b

n

. the second stage constraints, ZT X, = Zﬂ,’ % =0and

i
= =

. the convexity constraints, Z/If =1,
Jed;

respectively.
What new grid points might be introduced in order

to best improve the approximation?
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A prospective grid point z, for z, would yield a new
column for the LP, with elements of zero in all rows

except.

e —Z inrow i of the second-stage constraints,
¢ 1in row i of the set of convexity constraints
The reduced cost of this column would be
0
Q,(;,)f[o,v,w] —ze, =Q,(;‘)+v,;, -w,
e,

i

where e; is the ith unit vector.
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It is reasonable to choose the grid point so as to minimize this
reduced cost, i.e.,

Minimize Q,(z,)+v,z, —w,

This is an unconstrained one-dimensional nonlinear minimization!
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For each i=1, ... mp, find the optimal grid point.

If the minimum reduced cost is negative (or less than some
tolerance), the column should be generated for the grid point
and added to the LP tableau. (The minimum reduced cost
should never be positive, since a column for an existing grid
point is basic and has zero reduced cost!)

The sum of the m2 minimum reduced costs provides a bound on
the gap between the current approximate solution and the
exact solution, and can be used in the termination criterion for

the grid-refinement algorithm!
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Minimizing the Reduced Cost function

Minimize Q,(z,)+v,z, —w,

Case I: the random variable o has continuous distribution F.
The optimal solution is achieved at a stationary point z

such that

d d
;[Q,(Z)+ vz— w,] —;Q(:)Jrv, =0
Since
0(2)=-q +(q* +q’)F(z)
Therefore z must satisfy

,q++(q*+q’)17(z)+v=0 = |F(z

9 *q
Note the similarity to the optimal solution of the Newsboy Problem:

q' <— selling price, -¢~ «<—> salvage value, v <— acquisition cosd

SLPw/Simple Recourse page

DL Bricker
Case II: the random variable w has discrete distribution
Plo=0'}=p, s=1..8
The optimal solution is achieved at a point y such that O
is a subdifferential of the reduced cost:
Oe 6[Q(z)+ vz— w] =>-ve 6Q(z)
where 00(z) is the interval
[—q* +(q* +q ) P{w<z},—¢" Jr(q+ + q’)P{a) < z}]
That is,
—q" +(q* + q’)P{m < z} <—v<—q" +(q* +q’)P{m < z}

q —v
= Plw<z{< <Pw<:z
‘ { i 4 +q { }
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Example:
Stochastic Transportation Problem with Simple Recourse
Consider the small example with
e two sources, each with supply = 10, and
e three destinations, each with random demand.
Dstn #1 Dstn #2 Dstn #3

Source #1 3 5 6
c°5t Source #2 2 4 7

surpus &
q’ 4 3 6

Shortage
Cests ' 5 5 8
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@@m@m@ I Dstn #1 | Dstn #2 ]| Dstn #3

6 7 4

u
Distributien - 2 2 1

¢
) g“ ﬂjf‘a
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Initially, each Q,(z) is approximated by a three-point function,
with grid points at pand x+2c.

First approximation of Q,(z):

[ [ 10
grid point

# z Q(z) safety factor
1 6 7.181 0
2 2 20.156 2
3 10 16.156 2
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Approximation of Q,(z)

4 [ [ 10 12
arid point

# 4 Q(z) safety factor
4 7 6.3831 0
5 3 20.1383 2
6 11 12.1383 2
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Approximation of 0;(z)

e
<1

10

3 i 5
_ grd point

# z Q(z) safety factor

7 4 5.5852 0

8 2 16.1210 2

9 6 12.1210 2
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The initial tableau is:

qst

gtage gecoursé

rhs|-z 12345678 1 6 7 8 9

0] 135624700|7.181 16.16 20.16 6.383 12.14 20.14 5.585 12.12 16.12
100011100010 0 0 0 0 0 0 0 0 0
100 000011101 0 0 0 0 0 0 0 0 0

0l 010010000( 6 2 10 0 0 0 0 0 0

0 001001000 0 0 0 -7 3 11 0 0 0

0] 000100100 0 0 0 0 0 0 4 2 0

11 000000000 1 1 1 0 0 0 0 0 6

11 000000000 0 0 0 1 1 1 0 0 0

11 000000000 0 0 0 0 0 0 1 1 1
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iteration 1

Objective: 67.44

First stage: nonzero variables
i variable value

3 X13 2
4 X211 6
5 X22 3

Multipliers in convex combinations

i Col # Grid pt Multipliers
1 1 6 1
2 5 3 1
3 8 2 1

Second stage primal & dual solutions:

i output value v W
1 AAA 6 2 19.181
2 BBB 3 4 32.138
3 cce 2 6 28.121
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Refining the Grid:
For each random variable, solve a newsboy-type problem:

Demand #1: Using the dual variable v, =2, we solve the "newsboy
problem" by computing

z=F" [uj =F,"(4’2J = F'(0.22222) = 4.47457

q +q; 4+5
1
10+
& s
&
1
[ 2 4 8 2 10
- arid paint
SLPw/Simple Recourse page 2

D.LBricker

Demand #2: Using the dual variable v, =4, we compute
RS il :5,.(374]:5, (~0.125)
q, +4q, 3+5
This indicates that there is no stationary point of the reduced cost
function, but that it descends as one goes to the left-- we
therefore choose a new grid point at zero!

D.LBricker

Demand #3: Using the dual variable v, =4, we compute
=L Th | (L’GJ:F;' (0)
q; +q; 6+8

Again, there is no stationary point minimizing the reduced cost
function.

& 2
4 Eo
24 o
o
0 1 2 3 4 5
- _ ord point
In this case, the new grid point z = 0.49206 was selected.
K : T r : T
[ 1 2 3 4 5 6
- grid point
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Refined Grid: New piecewise-linear approximations of Q,(z)
i old z P grid pt Q(z) RC
1 6 0.22222 4.47457 8.397 1.83479 » »
2 3 70.12500 0.00000 21.001 ~3.13732
3 2 0.00000 0.49206 21.048 ~0.12019 Sis S1s
Sum of negative reduced costs: ~5.0923 = bound on gap 10 10
The current LP optimum is 67.44 (an upper bound), 4 J 8 10 2 ‘ o L L
_ orid paint 7 ord point
and so 67.44-5.0923 = 62.35 is a lower bound on the
2
optimum of the exact problem.
81
10
7 ] 3 i 3
_ orid paint
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iteration 2

Solution of LP: Objective: 62.348

First stage: nonzero variables

i variable value
3 X13 0.49206
4 X21 4.47457

Multipliers in convex combinations

i Col # Grid pt Multipliers
1 10 4.4746

2 511 30 01
3 12 0.49206 1

Second stage primal & dual solutions:

D.LBricker

Refined Grid:

i old z p grid pt 0(z) RC

1 4.47457 0.2222222 4.47453  8.3971 9.3110E710
2 0.00000 0.0057218 1.50000 16.5138 ~5.5814E 2
3 0.49206 0.0000000 0.68571 19.8875 9.8568E 4

Sum of negative reduced costs: ~0.055814 = bound on gap

Currently upper bound = 62.348

lower bound = 62.348 -0.0558 = 62.29

i output value v W
1 ARAR 4.47457 2.0000 17.346
2 BBB 0.00000 2.9542 21.001
3 cce 0.49206 6.0000 24.001
(v = dual variables for 2nd stage constraints,
w are for convexity constraints)
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iteration 3 iteration 4
Solution of LP: Objective: 62.348 Solution of LP: Objective: 62.348
First stage: nonzero variables First stage: nonzero variables
i variable value i variable value
3 X13 0.49206 3 X13 0.49206
4 X21 4.47457 4 X21 4.47457
Multipliers in convex combinations Multipliers in convex combinations
i Col # Grid pt Multipliers
1 10 4.4746 1 i Col # Grid pt Multipliers
2 1114 0 1.5 10 1 10 4.4746 1
3 12 0.49206 1 2 11 16 0 0.73528 10
3 12 0.49206 1
Second stage primal & dual solutions:
i output value v W Second stage primal & dual solutions:
1 AAA 4.47457 2.0000 17.346 i output value v W
2 BBB 0.00000 2.9914 21.001 1 AAA 4.47457 2.000 17.346
3 ccc 0.49206 6.0000 24.001 2 BBB 0.00000 2.996 21.001
Refined Grid: 3 ccc 0.49206 6.000 24.001
i old z p  grid pt 0(z) RC
1 4.47457 0.2222222 4.47453 8.3971 T9.3109E710
2 0.00000 0.0010706 0.73528 18.7981 ~3.3318E 3
3 0.49206 0.0000000 0.68571 19.8875 9.8568E 4

Sum of negative reduced costs: ~0.0033318 = bound on gap
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