"A Cross-Decomposition Algorithm for Two-Stage Stochastic Linear Programming with Recourse"

Abstract: We consider a paradigm of linear optimization in the face of uncertainty, in which (first-stage) decisions must be made before the uncertainty is resolved, and then recourse (second-stage decisions) is available to compensate. When a finite set of scenarios can be identified and their probability estimated, and the objective is to minimize the sum of the first-stage cost and the expected value of the second-stage cost, a (generally large) deterministic equivalent LP problem can be constructed. Benders' (primal) decomposition and Lagrangian (dual) decomposition each yields a family of smaller subproblems, one for each scenario, and a coordinating "master" problem. Crossdecomposition is a hybrid primal-dual iterative approach which eliminates the master problems and uses the primal and dual subproblems to provide both upper and lower bounds on the optimal expected cost at each iteration. A small example illustrates the computation.

Example	Data
• A farmer raises wheat, corn, and sugar beets on 500 acres of land. Before the planting	Wheat Corn Sugar Beets
season he wants to decide how much land to devote to each crop.At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be	Average Yield 2.5 T/Acre 3 T/Acre 20 T/Acre
 At least 200 forms of wheat and 240 forms of contrast elected for cattle feed, which can be purchased from a wholesaler if not raised on the farm. 	Planting cost \$150/Acre \$230/Acre \$260/Acre
 Any grain in excess of the cattle feed requirement can be sold at \$170 and \$150 per ton of 	Selling price \$170/T \$150/T \$36/T first 6000T \$10/T otherwise
wheat and corn, respectively.	Purchase price \$238/T \$210/T
 The wholesaler sells the grain for 40% more (namely \$238 and \$210 per ton, 	Minimum Rqmt 200T 240T
respectively.)	
• Up to 6000 tons of sugar beets can be sold for \$36 per ton; any additional amounts can be	
sold for \$10/ton.	
X-Decomposition of Stochastic LP 08/2001 page 3	X-Decomposition of Stochastic LP 08/2901 page 4
DECISION VARIABLES	LINEAR PROGRAMMING MODEL
We distinguish between two types of decisions:	Minimize $150x_1 + 230x_2 + 260x_3 + 238y_1 - 170w_1 + 210y_2 - 150w_2 - 36w_3 - 10w_4$
First stage (before growing season):	subject to
$x_1 = acres of land planted in wheat$	$\begin{array}{c} x_1 + x_2 + x_3 \leq 500 \\ 2.5 x_1 + y_1 - w_1 \geq 200 \end{array}$
$x_2 = acres of land planted in corn$	$3x_1 + y_1 - w_1 \ge 200$ $3x_2 + y_2 - w_2 \ge 240$
$x_3 = acres of land planted in beets$	$w_3 + w_4 \le 20x_3$
Second stage (after harvest):	$w_{3} \le 6000$ $x_{i} \ge 0, i=1,2,3; y_{i} \ge 0, i=1,2; w_{i} \ge 0, i=1,2,3,4$
$w_1 = tons of wheat sold$	
$w_2 = tons of corn sold$	
$w_3 = \text{tons of beets sold at $36/T}$ $w_4 = \text{tons of beets sold at $10/T}$	
$y_1 = \text{tons of wheat purchased}$	
$y_2 = tons of corn purchased$	
X-Decomposition of Stuchastic LP 08/2001 page 5	X-Decomposition of Stochast LP 08/2901 page 6
OPTIMAL SOLUTION	In actuality, crop yields are uncertain, depending upon weather conditions
Profit = \$118,600	during the growing season.
Wheat Corn Sugar Beets	Three scenarios have been identified
Plant 120 Acres 80 Acres 300 Acres	 "good" (20% higher than average)
Yield 300T 240T 6000T	 goud (20% inghet than average) "fair" (average)
Sales 100T 6000T	 "bad" (20% below average),
Purchase	each equally likely:
	Scenario Wheat yield Corn yield Beet yield
	k (tons/acre) (tons/acre)
	1. Good 3 3.6 24
	2. Fair 2.5 3 20
	3. Bad 2 2.4 16

Scenario #1: "Good" Yield: Optimal Profit = \$167,667 $Wheat$ Corn Sugar Beets Plant 183.333 Acres 66.67 Acres 250 Acres Yield 550T 240T 6000T Sales 350T 6000T	The stochastic decision problem is to optimize the first-stage cost plus the <i>expected</i> second-stage costs:		
Wheat Corn Sugar Beets Plant 183.333 Acres 66.67 Acres 250 Acres Yield 550T 240T 6000T Sales 350T 6000T			
Yield 550T 240T 6000T Sales 350T 6000T	second-stage costs:		
Sales 350T 6000T			
Sales 350T 6000T	3		
	Minimize $150x_1 + 230x_2 + 260x_3 + \frac{1}{3} \sum_{k=1}^{3} Q_k(x)$		
Purchase	subject to $x_1 + x_2 + x_3 \le 500$		
	$x_{j} \ge 0, j=1,2,3$		
Scenario #3: "Bad" Yield: Optimal Profit = \$59,950			
Wheat Corn Sugar Beets	where		
Plant 100 Acres 25 Acres 375 Acres	$Q_k(x)$ = second-stage costs in scenario k, <i>if</i> first-stage decisions x have been		
Yield 200T 60T 6000T	implemented		
Sales 6000T	•		
Purchase			
If a perfect forecast was available, then, the expected profit would be			
$\frac{1}{3} \times \$167, 667 + \frac{1}{3} \times \$118, 600 + \frac{1}{3} \times \$59, 950 = \$115, 406$			
X-Decomposition of Stochastic LP 08/29/01 page 9	X-Decomposition of Stochastic LP 08/29/01 page 10		
$Q_1(x) = \text{Minimum } 170w_1 + 150w_2 + 36w_3 + 10w_4 - 238y_1 - 210y_2$	TWO-STAGE LINEAR PROGRAMMING WITH RECOURSE		
s.t. $y_1 - w_1 \ge 200 - 3x_1$	$\text{Minimize } z = cx + E\left[\min q(\omega) y(\omega)\right]$		
$y_2 - w_2 \ge 240 - 3.6x_2$	subject to		
$w_3 + w_4 \le 24x_3$ $y_1 \ge 0, y_2 \ge 0, w_1 \ge 0, w_2 \ge 0, \ 0 \le w_3 \le 6000, w_4 \ge 0$	Ax = b		
	$T(\omega)x + Wy(\omega) = h(\omega),$		
$Q_2(x) = \text{Minimum } 170w_1 + 150w_2 + 36w_3 + 10w_4 - 238y_1 - 210y_2$	$x \ge 0, y(\omega) \ge 0$		
s.t. $y_1 - w_1 \ge 200 - 2.5x_1$ $y_2 - w_2 \ge 240 - 3x_2$	where		
$w_3 + w_4 \le 20x_3$	x = first-stage decision		
$y_1 \ge 0, y_2 \ge 0, w_1 \ge 0, w_2 \ge 0, \ 0 \le w_3 \le 6000, w_4 \ge 0$	and		
$Q_3(x) = \text{Minimum } 170w_1 + 150w_2 + 36w_3 + 10w_4 - 238y_1 - 210y_2$	$y(\omega)$ = second-stage decision after random event ω is observed		
$\underbrace{g_3(x)}_{s.t. y_1 - w_1} \ge 200 - 2x_1$	which must satisfy the <i>second-stage constraints</i>		
$y_2 - w_2 \ge 240 - 2.4x_2$			
$w_3 + w_4 \le 16x_3$ $y_1 \ge 0, y_2 \ge 0, w_1 \ge 0, w_2 \ge 0, \ 0 \le w_3 \le 6000, w_4 \ge 0$	$T(\omega)x + Wy(\omega) = h(\omega),$		
$y_1 \ge 0, y_2 \ge 0, w_1 \ge 0, w_2 \ge 0, 0 \le w_3 \le 0000, w_4 \ge 0$	where $q(\omega)$, $T(\omega)$ & $h(\omega)$ are random variables		
X-Decomposition of Stochastic LP 08/29/01 page 11	X-Decomposition of Stochastic LP 08/29/01 page 12		
DETERMINISTIC EQUIVALENT PROBLEM	Consider the deterministic LP derived from the 2-stage stochastic LP:		
Assume a finite number of scenarios.	~		
For each scenario k, define a set of second-stage variables, y^k , and arrays T_k , q_k , and h_k	$Z = \min cx + \sum_{k=1}^{K} p_k q_k y^k$		
$\frac{1}{2}$	subject to		
The objective is to minimize the expected total costs of first and second stages	$T_k x + W y^k = h_k, k = 1, \dots K;$		
ĸ	$x \in X$		
Minimize $cx + \sum_{k=1}^{\infty} p_k Q_k(x)$	$v^k \ge 0, k = 1, \dots K$		
subject to $x \in X$	where the feasible set of first-stage decisions is defined by		
where the cost of the second stage is	$X = \left\{ x \in \mathbb{R}^n : Ax = b, x \ge 0 \right\}$		
$Q_k(x) = \text{Minimum} \{q_k y : Wy = h_k - T_k x, y \ge 0\}$			
X-Decomposition of Stochastic LP 08/29/01 page 13	X-Decomposition of Stochastic LP 082901 page 14		
Example:	DETERMINISTIC EQUIVALENT LP:		
	Minimize $150x_1 + 230x_2 + 260x_3 + \frac{1}{2}\left(238y_1^1 - 170w_1^1 + 210y_2^1 - 150w_2^1 - 36w_3^1 - 10w_4^1\right)$		
Second stage decisions:	$+ \frac{1}{3} \left(238y_1^2 - 170w_1^2 + 210y_2^2 - 150w_2^2 - 36w_3^2 - 10w_4^2 \right)$		
For each scenario k ($k=1,2,3$), define a set of decision variables:	$+\frac{1}{3}(238y_1 - 170w_1 + 210y_2 - 150w_2 - 36w_3 - 10w_4) +\frac{1}{3}(238y_1^3 - 170w_1^3 + 210y_2^3 - 150w_2^3 - 36w_3^3 - 10w_4^3)$		
$w_i^k = $ tons of wheat sold			
$w_2^k = $ tons of corn sold	subject to $x_1 + x_2 + x_3 \le 500$		
$w_1^k = \text{tons of beets sold at } 36/\text{T}$	Scenario 1 Scenario 2 Scenario 3		
w_a^{\prime} = tons of beets sold at \$10/T	$3x_1 + y_1^1 - w_1^1 \ge 200 \qquad 2.5x_1 + y_1^2 - w_1^2 \ge 200 \qquad 2x_1 + y_1^3 - w_1^3 \ge 200$		
$w_4 = 1015$ 01 00005 5010 at \$10/1	$3.6x_2 + y_2^1 - w_2^1 \ge 240 \qquad 3x_2 + y_2^2 - w_2^2 \ge 240 \qquad 2.4x_2 + y_2^3 - w_2^3 \ge 240$		
	$24x_3 - w_3^1 - w_4^1 \ge 0 \qquad 20x_3 - w_3^2 - w_4^2 \ge 0 \qquad 16x_3 - w_3^2 - w_4^3 \ge 0$		
$y_1^k = $ tons of wheat purchased	$w_3^1 \le 6000$ $w_3^2 \le 6000$ $w_3^3 \le 6000$		
$y_1^k = $ tons of wheat purchased	$x_i \ge 0, i=1,2,3;$		
$y_1^k = $ tons of wheat purchased			
$y_1^k = $ tons of wheat purchased	$x_i \ge 0, i=1,2,3;$		
$y_1^k = $ tons of wheat purchased	$x_i \ge 0, i=1,2,3;$ $y_i^k \ge 0, i=1,2 & k=1,2,3;$ $w_i^k \ge 0, i=1,2,3,4 & k=1,2,3$		
$y_1^k = $ tons of wheat purchased	$x_i \ge 0, i=1,2,3;$ $y_i^k \ge 0, i=1,2 \& k=1,2,3;$		

Optimal Solution: Expected profit= \$108,390

		Wheat	Corn	Sugar Beets
First stage	Plant:	170 Acres	80 Acres	250 Acres
k=1	Yield	510 T	288 T	6000 T
"Good yield"	Sales	310 T	48 T	6000 T
	Purchase			
k=2	Yield	425 T	240 T	5000 T
"Fair yield"	Sales	225 T		5000 T
	Purchase			
k=3	Yield	340 T	192 T	4000 T
"Bad yield"	Sales	140 T		4000 T
	Purchase		48 T	

08/29/01

 $D(\lambda) = \min cx^0 + \sum_{k=1}^{K} p_k q_k y^k + \sum_{k=1}^{K} \lambda_k \left(x^k - x^0 \right)$

subject to $x^{0} \in X$ $T_{k}x^{k} + Wy^{k} = h_{k}, k = 1,...K;$ $x^{k} \ge 0, k = 1,...K; y^{k} \ge 0, k=1,2,...K$

 $D(\lambda) = \min\left(c - \sum_{k=1}^{K} \lambda_k\right) x^0 + \sum_{k=1}^{K} \left[\lambda_k x^k + p_k q_k y^k\right]$

08/29/01

subject to the above constraint

sition of Stochastic LP

sition of Stochastic LP

That is,

 Using the original solution (where *expected values of yields* were assumed, i.e., planting 120 acres of wheat, 80 acres of corn, & 300 acres of beets) his expected profit would be \$107,240 (which is \$1,150 less than the optimal expected value).

◆ The Expected Value of Perfect Information is \$115,406 - \$108,390 = \$7016

LAGRANGIAN RELAXATION

Given a family of Lagrangian multiplier vectors λ_k , k=1,...K, we define the relaxation:

page 17

page 19

LAGRANGIAN DECOMPOSITION: "Splitting" First-Stage Variables

For each scenario k, define a first-stage decision x^k which must equal the original firststage decision (which we now denote by x^0). We can then write the equivalent LP:

> $Z = \min cx_0 + \sum_{k=1}^{K} p_k q_k y^k$ subject to $x^0 \in X$

In order to separate the LP by scenario, we need to "relax" the constraints $x^0 = x^k, k = 1, \dots K;$

This is motivated by the fact that the problem then separates into K+1 subproblems:

 $D(\lambda) = D_0(\lambda_1, \dots, \lambda_K) + \sum_{k=1}^K D_k(\lambda_k)$

page 18

page 20

STOP

page 22

page 24

where

$$D_0(\lambda) = \min\left(c - \sum_{k=1}^{K} \lambda_k\right) x$$

subject to $x^0 \in X$

08/29/01

and, for each k=1, ...K:

tion of Stochastic I P

mposition of Stochastic LP

mposition of Stochastic LP

ion of Stochastic LP

$$D_k(\lambda) = \min \lambda_k x^k + p_k q_k y$$

subject to $T_k x^k + W y^k = h_k$
 $x^k \ge 0; y^k \ge 0$

08/29/01

Master Problem: Adjust multipliers λ

λ

Lagrangian Subproblem D_k(λ), k=0,1,...K

Converged?

08/29/01

 $\begin{tabular}{|c|c|c|c|} \hline Dual Subproblem 0 & Dual Subproblem for \\ \hline for 1^{st} Stage & Scenario k, k=1, ...K \\ \hline min \left(c - \sum\limits_{k=1}^{K} \lambda_k \right) x^0 & Min \lambda_k x^k + p_k q_k y^k \\ subject to x^0 \in X & T_k x^k + W y^k = h_k \\ x^k \ge 0, y^k \ge 0 \\ \hline \end{tabular}$

The value $D(\lambda) = D_0(\lambda_1, \dots, \lambda_K) + \sum_{k=1}^K D_k(\lambda_k)$ provides a *lower bound* on the optimal cost *Z*.

The Lagrangian dual problem is to select the multipliers which will produce the *tightest* such lower bound:

$$\widehat{D} = \max_{\lambda} D(\lambda)$$

Note: In the linear case, $\hat{D} = Z$ and there is no "duality gap".

X-Decomposition of Stochastic LP 08/29/01

BENDERS' DECOMPOSITION

page 21

page 23

Benders' partitioning (commonly known in stochastic programming as the "L-Shaped Method") achieves separability of the second stage decisions, but in a different manner. Given a first-stage decision x^0 , solve for each scenario k=1, ...K the second-stage LP:

 $P_k(x^0) = \min q_k y^k$

subject to $Wy^k = h_k - T_k x^0, y^k \ge 0$

Then $P(x^0) = cx^0 + \sum_{k=1}^{k} p_k P_k(x^0)$ provides us with an *upper* bound on the optimal cost

Z, i.e.,

X-Decomposition of Stochastic LP

 $D(\lambda) \le Z \le P(x^0)$

08/29/01

Furthermore, solving each LP provides us with a vector λ_k of dual variables corresponding to the constraints $x^0 = x^k$.

If π_k is the dual solution of the LP
$$\begin{split} P_k\left(x^0\right) &= \min q_k y^k \\ \text{subject to } Wy^k &= h_k - T_k x^0, y^k \geq 0 \\ \text{then } \lambda_k &= -T_k^\top \pi_k \end{split}$$

08/29/01

