"A Cross-Decomposition Algorithm for Two-Stage Stochastic
Linear Programming with Recourse"

Abstract: We consider a paradigm of linear optimization in the face of uncertainty, in which (first-stage) decisions must be made before the uncertainty is resolved, and then recourse (second-stage decisions) is available to compensate. When a finite set of scenarios can be identified and their probability estimated, and the objective is to minimize the sum of the first-stage cost and the expected value of the second-stage cost, a (generally large) deterministic equivalent LP problem can be constructed. Benders' (primal) decomposition and Lagrangian (dual) decomposition each yields a family of smaller
subproblems, one for each scenario, and a coordinating "master" problem. Crossdecomposition is a hybrid primal-dual iterative approach which eliminates the master problems and uses the primal and dual subproblems to provide both upper and lower bounds on the optimal expected cost at each iteration. A small example illustrates the computation.

| X-DEcomposition of Stactasicic LP O82901 prag | x-Dcoomposition of Sucham | - 08290 |  | page 2 |
| :---: | :---: | :---: | :---: | :---: |
| Example <br> - A farmer raises wheat, corn, and sugar beets on 500 acres of land. Before the planting season he wants to decide how much land to devote to each crop. <br> - At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be purchased from a wholesaler if not raised on the farm. <br> - Any grain in excess of the cattle feed requirement can be sold at $\$ 170$ and $\$ 150$ per ton of wheat and corn, respectively. <br> - The wholesaler sells the grain for $40 \%$ more (namely $\$ 238$ and $\$ 210$ per ton, respectively.) <br> - Up to 6000 tons of sugar beets can be sold for $\$ 36$ per ton; any additional amounts can be sold for $\$ 10 /$ ton. |  | Wheat $2.5 \mathrm{~T} /$ Acre $\$ 150 /$ Acre $\$ 170 / \mathrm{T}$ $\$ 238 / \mathrm{T}$ 200 T | $\quad$ Corn <br> 3 T/Acre <br> \$230/Acre <br> $\$ 150 / \mathrm{T}$ <br>  <br> $\$ 2210 / \mathrm{T}$ <br> 240 T | Sugar Beets <br> $20 \mathrm{~T} /$ Acre <br> \$260/Acre <br> \$36/T first 6000T <br> \$10/T otherwise <br>  |
| DECISION VARIABLES <br> We distinguish between two types of decisions: <br> First stage (before growing season): <br> $\mathrm{x}_{1}=$ acres of land planted in wheat <br> $\mathrm{x}_{2}=$ acres of land planted in corn <br> $\mathrm{x}_{3}=$ acres of land planted in beets <br> Second stage (after harvest): <br> $\mathrm{w}_{1}=$ tons of wheat sold <br> $\mathrm{w}_{2}=$ tons of corn sold <br> $w_{3}=$ tons of beets sold at $\$ 36 / T$ <br> $w_{4}=$ tons of beets sold at $\$ 10 / T$ <br> $y_{1}=$ tons of wheat purchased <br> $y_{2}=$ tons of corn purchased | Linear Progr <br> Minimize $150 x_{1}+2$ subject to $x_{i} \geq 0, \mathrm{i}$ | AMMING Mo $\begin{array}{r} 30 x_{2}+260 x_{3}+2 \\ x_{1}+x_{2}+x \\ 2.5 x_{1}+y_{1}-v \\ 3 x_{2}+y_{2}-u \\ z_{3}+w^{2} \\ w_{3} \\ =1,2,3 ; y_{i} \geq 0, \end{array}$ | ODEL <br> $238 y_{1}-170 w$ $\begin{aligned} & x_{3} \leq 500 \\ & w_{1} \geq 200 \\ & w_{2} \geq 240 \\ & y_{4} \leq 20 x_{3} \\ & \leq 6000 \\ & \mathrm{i}=1,2 ; w_{i} \geq 0 \end{aligned}$ | $v_{1}+210 y_{2}-150 w_{2}-36 w_{3}-10 w_{4}$ $0, \mathrm{i}=1,2,3,4$ |
| Optimal solution$\text { Profit }=\$ 118,600$ Wheat Corn Sugar Beets <br> Plant 120 Acres 80 Acres 300 Acres <br> Yield 300 T 240 T 6000 T <br> Sales 100 T -- 6000 T <br> Purchase -- -- -- | In actuality, crop during the grow Three scenarios <br> - "good" (20 <br> - "fair" (aver <br> - "bad" $(20 \%$ <br> each equally like | yields are ing season. <br> have been id \% higher tha age) below avera ly: <br> Scenario <br> 1. Good <br> 2. Fair <br> 3. Bad 2 | ncertain, <br> entified <br> n average) <br> ge), <br> heat yield <br> ons/acre) | depending upon weather conditions |




| An aside: Computing $\lambda_{k}$ : <br> The dual of $\begin{aligned} & \operatorname{Min} q_{k} y^{k} \\ & \text { subject to } \\ & \quad T_{k} x^{k}+W y^{k}=h_{k}, \\ & x^{k}=x^{0}, \\ & x^{k} \geq 0 \end{aligned}$ <br> is the LP $\begin{aligned} & \operatorname{Max} h_{k} \pi_{k}+x^{0} \lambda_{k} \\ & \text { subject to: } \\ & \qquad T_{k}^{T} \pi_{k}+I \lambda_{k}=0 \\ & W^{T} \pi_{k} \leq q_{k} \end{aligned}$ <br> If we eliminate $\lambda_{k}$ using the equality constraint, we obtain $\lambda_{k}=-T_{k}^{\mathrm{T}} \pi_{k}$ and the dual LP $\begin{aligned} & \operatorname{Max}\left(h_{k}-T_{k} x^{0}\right) \pi_{k} \\ & \text { subject to } \\ & \quad W^{T} \pi_{k} \leq q_{k} \end{aligned}$ | The original problem now is seen to be equivalent to $\begin{aligned} & \operatorname{Min} c x^{0}+\sum_{k=1}^{K} p_{k} P_{k}\left(x^{0}\right) \\ & \text { subject to } \quad x^{0} \in X \end{aligned}$ <br> By making use of dual information obtained after M evaluations of $P_{k}\left(x^{0}\right)$, Benders' procedure forms an approximation (a convex piecewise-linear function) of $P_{k}\left(x^{0}\right)$ : $P_{k}\left(x^{0}\right) \geq \max _{i=1, \ldots \mathrm{M}}\left\{\alpha_{k}^{i} x^{0}+\beta_{k}^{i}\right\}$ <br> so that the original problem reduces (with introduction of new variables $\theta_{k}$ )to $\begin{aligned} & \operatorname{Min} c x^{0}+\sum_{k=1}^{K} p_{k} \theta_{k} \\ & \text { subject to } x^{0} \in X \\ & \text { and } \\ & \theta_{k} \geq \alpha_{k}^{i} x^{0}+\beta_{k}^{i}, \mathrm{i}=1, \ldots \mathrm{M} ; \mathrm{k}=1, \ldots \mathrm{~K} \end{aligned}$ |
| :---: | :---: |
| That is, we have approximated $P_{k}\left(x^{0}\right)$ by the maximum of a finite number of linear functions, i.e., by a piecewise-linear convex function: |  |
| In either the Lagrangian relaxation approach or Benders' decomposition, the burden of the computation lies in the respective master problems: searching for the optimal $\lambda$ in the case of Lagrangian relaxation, \& searching for the optimal $\mathrm{x}^{0}$ in the case of Benders' decomposition. <br> The subproblems, being LPs separable by scenario, are easily solved in comparison. | STOP |
| Cross-Decomposition <br> Cross-decomposition is a hybrid of Benders' decomposition and Lagrangian relaxation, in which the subproblem of each algorithm serves the purpose of the master problem of the other. <br> That is, Benders' subproblem receives the first-stage decisions $\mathrm{x}^{0}$ from the Dual subproblem $\mathrm{D}_{0}$ rather than from the Benders' master problem. <br> Likewise, the Dual subproblem $\mathrm{D}_{0}$ receives the necessary multipliers $\lambda$ from the Benders' subproblem, rather than from the Dual master problem. | Cross-Decomposition <br> Note that the algorithm can be "streamlined"-- only one of the dual subproblems $\mathrm{D}_{0}(\lambda)$ needs to be solved at each iteration, except when the termination criterion $P\left(x^{0}\right)-D(\lambda) \leq \varepsilon$ <br> is to be tested. |



