The Farmer's Problem Stochastic LP with Recourse

Example problem in Birge & Louveaux, Introduction to Stochastic Programming

SLPwR: Farmer Problem

Crop yields are uncertain, depending upon weather conditions during the growing season.

Three **scenarios** have been identified ("good", "fair", and "bad"), each equally likely.

(In this data, only the yields are scenario-dependent, while in reality the purchase prices and sales revenues from grain would be higher in year with poor yield, etc.)

	Wheat yield	Corn yield	Beet yield
Scenario	(tons/acre)	(tons/acre)	(tons/acre)
1. Good	3	3.6	24
2. Fair	2.5	3	20
3. Bad	2	2.4	16

 A farmer raises wheat, corn, and sugar beets on 500 acres of land. Before the planting season he wants to decide how much land to devote to each crop.

- · At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be purchased from a wholesaler if not raised on the farm.
- Any grain in excess of the cattle feed requirement can be sold at \$170 and \$150 per ton of wheat and corn, respectively.
- \bullet The wholesaler sells the grain for 40% more (namely \$238 and \$210 per ton, respectively.)
- Up to 6000 tons of sugar beets can be sold for \$36 per ton; any additional amounts can be sold for \$10/ton.

General Stochastic LP model:

SLPwR: Farmer Problem

$$Z = \min cx + \sum_{k=1}^{K} p_k q_k y_k$$
 subject to (0.1)

$$T_k x + W y_k = h_k, k = 1, \dots K;$$

$$x \in X$$

$$(0.2)$$

In this example, only T_k varies by scenario, while the cost vector

 q_k and the right-hand-side h_k are fixed.

The stochastic decision problem is

Minimize $150x_1 + 230x_2 + 260x_3 + \frac{1}{3}\sum_{k=0}^{3}Q_k(x)$ subject to $x_1 + x_2 + x_3 \le 500$ $x_i \ge 0, j=1,2,3$

where $Q_i(x)$ is the optimal solution of the second stage (recourse) problem after the scenario has been determined, given that the first stage variables x have been selected.

Decision variables are

First stage: x_1 = acres of land planted in wheat

 x_2 = acres of land planted in corn

 x_3 = acres of land planted in beets

 w_1 = tons of wheat sold Second stage:

 w_2 = tons of corn sold

w₃ = tons of beets sold at \$36/T w_4 = tons of beets sold at \$10/T y_1 = tons of wheat purchased y2 = tons of corn purchased

D.L.Bricker

 $Q_1(x) = \text{Minimum} - 170 w_1 - 150 w_2 - 36 w_3 - 10 w_4 + 238 y_1 + 210 y_2$ s.t. $y_1 - w_1 \ge 200 - 3x_1$

 $y_2 - w_2 \ge 240 - 3.6x_2$ $w_3 + w_4 \le 24x_3$

 $y_1 \ge 0, y_2 \ge 0, \ w_1 \ge 0, w_2 \ge 0, \ 0 \le w_3 \le 6000, w_4 \ge 0$

 $Q_2(x) = \text{Minimum} - 170 w_1 - 150 w_2 - 36 w_3 - 10 w_4 + 238 y_1 + 210 y_2$

s.t. $y_1 - w_1 \ge 200 - 2.5x_1$ $y_2 - w_2 \ge 240 - 3x$ $w_3 + w_4 \le 20x_3$ $y_1 \ge 0, y_2 \ge 0, w_1 \ge 0, w_2 \ge 0, 0 \le w_3 \le 6000, w_4 \ge 0$

SLPwR: Farmer Problem

 $Q_3(x) = \text{Minimum} -170 w_1 -150 w_2 -36 w_3 -10 w_4 +238 y_1 +210 y_2$ s.t. $y_1 - w_1 \ge 200 - 2x_1$ $y_2 - w_2 \ge 240 - 2.4x_2$ $w_3 + w_4 \le 16x_3$ $y_1 \ge 0, y_2 \ge 0, w_1 \ge 0, w_2 \ge 0, 0 \le w_3 \le 6000, w_4 \ge 0$

Solving Certainty Equivalent

All random parameters (in this case, T) are replaced by their expected values.

Tableau

b	z	X[1]	[2]	[3]]	1	2	3	4	5	6	7	8	9	0
0	1	150	230	260	0	238	210	-170	-150	-36	-10	0	0	0	0
500	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0
200	0	2.5	0	0	0	1	0	-1	0	0	0	-1	0	0	0
240	0	0	3	0	0	0	1	0	-1	0	0	0	-1	0	0
0	0	0	0	-20	0	0	0	0	0	1	1	0	0	1	0
6000	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Optimal Solution			Evaluating this Trial Solution for Expected Cost:
	inty equivalent problem, andom parameters by their	expected values.	First stage:
			iX[i]
Total cost: -118600	i variabl		2 80 Corn acres 3 300 Beet acres
Stage One Variables:	1 Y[1]		4 0
i variable value 1 X[1] 120	2 Y[2] Wheat acres 3 W1	0 100 Wheat sold	Second stage costs:
	Corn acres 4 W2 Beet acres 5 W3	0 6000 Beets sold	scenario k cost p[k] 1 -29155.55556 0.3333333333
4 slack 1 0	6 W4 7 surplus	0 1 0	2
	9 slack 3	0	First stage cost: 114400.00 Expected second stage cost: -221640.00
	10 slack 4	0	Total: -107240.00
	t the farmer's expected reve 8600?	nues will actually be	Using this planting plan, therefore, yields an expected 107240 revenue
SLPwR: Farmer Problem	page 9	D.L.Bricker	SLPwR: Farmer Problem page 10 D.L.Bricker
Tableau of Determinis		D.L.Dieses	(Tableau, continued)
b z X[1] X[2] [3]	-	7 8 9 0 1 2	3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
0 1 150 230 260 0 500 0 1 1 1 1 1	79.33 70 -56.67 -50 -12 -3.3	33 0 0 0 0 79.33 70 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
200 0 3 0 0 0 240 0 0 3.6 0 0 0 0 0 0 -24 0		-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6000 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
240 0 0 3 0 0 0 0 0 0 -20 0	0 0 0 0 0 0	0 0 0 0 0 1 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 0 0 0 -16 0 6000 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0
continued			
* *** **** **** * * * * * * * * * * *	* * *		### without decomposition Total cost: 108390 Stage One Variables: i
*			
*	* *		Second Stage
*	* *		
* * SLPwR: Farmer Problem	* *	D.L.Bricker	Second Stage For each scenario, the optimal recourse variables are computed:
* * SLPwR: Farmer Problem	* *	D.L.Bricker	Second Stage For each scenario, the optimal recourse variables are computed:
* * SLPwR: Farmer Problem	* *	D.L.Bricker	Second Stage For each scenario, the optimal recourse variables are computed: SLPWR: Farmer Problem page 14 DLLBricker
* * SLPwR: Farmer Problem	* *	D.L.Bricker	Second Stage For each scenario, the optimal recourse variables are computed:

Scenario #2 "Fair" y	rield		Scenario #3 "Bad" yield	
4 W2 5 W3 5 6 W4 7 surplus 1 8 surplus 2 9 slack 3 10 slack 4 1	1ue		i variable value 1 Y(1) 0 2 Y(2) 48 Purchase 4 3 W1 140 Sales of W 4 W2 0 5 W3 4000 6 W4 0 7 surplus 1 0 8 surplus 2 0 9 slack 3 0 10 slack 4 2000	heat
advance knowledge of	puge 17 ormation", i.e., assuming th f the quality of the yield and		SLPwR: Farmer Problem page 18 Solution for scenario #2 "Fair" y	D.L.Bricker ield
upon that knowledge	. #1 . ugaadui.ald		Optimal cost: 118600	
Solution for scenario	_		Stage One Variables:	
	Wheat Acres Corn Acres		i x[i] 1 120.00 Wheat Acres 2 80.00 Corn Acres 3 300.00 Beet Acres 4 0.00	
4 0.00 Second-stage: nonzero i Y[i] 3 350.00	Deet Acres Description variables Sales of wheat Sales of Beets		Second-stage: nonzero variables i Y[i] 3 100.00 Sales of Wheat 5 6000.00 Sales of Beets	
SLPwR: Farmer Problem	page 19	D.L.Bricker	SLPwR: Farmer Problem page 20	D.L.Bricker
Solution for scenario	#3 "Bad" yield		Expected value with perfect inform	ation:
Optimal cost: 59950 Stage One Variables:			$\frac{1}{3}(167666.6667) + \frac{1}{3}(118600$	$+\frac{1}{3}(59950) = 115405.56$
<u>i</u>	Wheat Acres		What is the Value of Perfect Inform	ation (VPI) ?
2 25.00	Corn Acres Beet Acres		(Expected value with perfect information 115405 - 108390 = 7015	tion) - (Expected value without information)
Second-stage: nonzero	variables		= 113 703 100370 = 7013	
	Purchase of Corn Sales of Beets			