4 $\frac{a}{5}$ aconan

Example problem in Birge \& Louveaux, Introduction to Stochastic Programming

SLPwR: Fammer Problem
Crop yields are uncertain, depending upon weather conditions during the growing season.

Three scenarios have been identified ("good", "fair", and "bad"), each equally likely.
(In this data, only the yields are scenario-dependent, while in reality the purchase prices and sales revenues from grain would be higher in year with poor yield, etc.)

	Wheat yield (tons/acre)		Corn yield (tons/acre)
Scenario	(tons/acre)		

Decision variables are

- A farmer raises wheat, corn, and sugar beets on 500 acres of land. Before the planting season he wants to decide how much land to devote to each crop.
- At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be purchased from a wholesaler if not raised on the farm.
- Any grain in excess of the cattle feed requirement can be sold at $\$ 170$ and $\$ 150$ per ton of wheat and corn, respectively
- The wholesaler sells the grain for 40% more (namely $\$ 238$ and $\$ 210$ per ton, respectively.)
- Up to 6000 tons of sugar beets can be sold for $\$ 36$ per ton; any additional amounts can be sold for $\$ 10 /$ ton.

SLPwR: Farmer Problem
page 2
General Stochastic LP model:

$$
\begin{align*}
Z= & \min c x+\sum_{k=1}^{K} p_{k} q_{k} y_{k} \\
& \text { subject to } \\
& T_{k} x+W y_{k}=h_{k}, k=1, \ldots K ; \tag{0.2}\\
& x \in X \tag{0.3}
\end{align*}
$$

In this example, only T_{k} varies by scenario, while the cost vector q_{k} and the right-hand-side h_{k} are fixed.

SLPwR: Farmer Problen page 4 D.L.Bricker

The stochastic decision problem is

$$
\begin{gathered}
\text { Minimize } 150 x_{1}+230 x_{2}+260 x_{3}+1 / 3 \sum_{k=1}^{3} Q_{k}(x) \\
\text { subject to } x_{1}+x_{2}+x_{3} \leq 500 \\
x_{j} \geq 0, \mathrm{j}=1,2,3
\end{gathered}
$$

where $Q_{i}(x)$ is the optimal solution of the second stage (recourse) problem after the scenario has been determined, given that the first stage variables x have been selected.

SLPwR: Farmer Problem

Solving Certainty Equivalent

All random parameters (in this case, T) are replaced by their expected values.

Tableau

b	z	$\mathrm{X}[1]$	$[2]$	$[3]$	$]$	1	2	3	4	5	6	7	8	9	0
0	1	150	230	260	0	238	210	-170	-150	-36	-10	0	0	0	0
500	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0
200	0	$\mathbf{2 . 5}$	0	0	0	1	0	-1	0	0	0	-1	0	0	0
240	0	0	3	0	0	0	1	0	-1	0	0	0	-1	0	0
0	0	0	0	-20	0	0	0	0	0	1	1	0	0	1	0
6000	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Solution

Optimal Solution
Found by solving certainty equivalent problem,
i.e., replacing all random parameters by their expected values.
Total cost: ${ }^{-118600}$

Stage One Variables:

i	variable	value	
	X[1]	120	Wheat acres
2	$X[2]$	80	Corn acres
3	$X[3]$	300	Beet acres
4	slack 1	0	

First stage:

Second stage costs:

scenario k	cost	$\mathrm{p}[\mathrm{k}]$
1	-29155.55556	0.3333333333
2	-25888.88889	0.3333333333
3	-18835.55556	0.3333333333
		114400.00
First stage cost:	-221640.00	
Expected second stage cost:	-107240.00	
Total:		

Using this planting plan, therefore, yields an expected 107240 revenue.
\qquad (Tableau, continued)

3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	
-56.67	-50	-12	-3.333	0	0	0	0	79.33	70	-56.67	-50	-12	-3.333	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-1	0	0	0	-1	0	0	0	0	0	0	0	0	0		0	0	0	0
0	-1	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	0	-1	0	0	0	-1	0	0	0	
0	0	0	0	0	0	0	0	0	1	0	-1	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	

LPwR: Farmer Problem page 12
D.L.Bricker

Optimal Solution

(Found by solving deterministic equivalent problem directly, without decomposition)

Total cost: 108390
Stage One Variables:

Second Stage

For each scenario, the optimal recourse variables are computed:

SLPwR: Farmer Problem page 14
D.L.Bricker

Scenario \#1 "Good" yield

i	variable	value	
1	Y[1]	0	
2	Y[2]	0	
3	W1	310	Sales of wheat
4	W2	48	Sales of corn
5	W3	6000	Sales of beets
6	W4	0	
7	surplus 1	0	
8	surplus 2	0	
9	slack 3	0	
10	slack 4	0	

