RELAXATIONS

Consider a typical integer programming problem:

Problem (P):

Find
$$z' = \min\{c(x) | x \in X \subseteq Z^n\}$$

where

Z is the set of nonnegative integers $\{0,1,2,3,\ldots\}$

 Z^n is the set of n-dimensional vectors of nonnegative integers

		-
	•	Dro

- Dropping integer restrictions (the *LP relaxation* of a (linear) MIP);
- Dropping some constraints.
- Aggregating constraints (*surrogate constraint*);
- ♦ Lagrangian relaxation

Common relaxations:

• Replacing cost function by linear underestimate

©D.Bricker, U. of IA, 2000	page 1	08/30/00	©D.Bricker, U. of IA, 2000	page 3	08/30/00

Problem P': Find
$$z = \min\{f(x) | x \in X' \subseteq \mathbb{R}^n\}$$

is a *relaxation* of problem P if:

- 1. the feasible region X' of P' contains the feasible region of P, i.e., $X \subseteq X'$
- 2. the objective value in P' is no worse than that of P for all x in the domain of P, i.e., $c(x) \ge f(x)$ for all x in X (*for minimization*).

Propositions:

- ♦ If P' is a relaxation of P, then z' ≤ z (in case of minimization)
- If P' is infeasible, then P is infeasible
- ◆ If x* solves P' and is feasible in P (i.e., x*∈ X), and f(x*)=c(x*), then x* solves P

These propositions imply that a relaxation can be used to fathom nodes of a search tree (*branch-&-bound method*).