

RELAXATIONS

Consider a typical integer programming problem:

Problem (P):

$$\text{Find } z' = \min \{c(x) \mid x \in X \subseteq \mathbb{Z}^n\}$$

where

Z is the set of nonnegative integers $\{0, 1, 2, 3, \dots\}$

\mathbb{Z}^n is the set of n -dimensional vectors of nonnegative integers

Common relaxations:

- ◆ Dropping integer restrictions (the *LP relaxation* of a (linear) MIP);
- ◆ Dropping some constraints.
- ◆ Aggregating constraints (*surrogate constraint*);
- ◆ Lagrangian relaxation
- ◆ Replacing cost function by linear underestimate

Problem P': Find $z = \min \{f(x) \mid x \in X' \subseteq \mathbb{R}^n\}$

is a *relaxation* of problem P if:

1. the feasible region X' of P' contains the feasible region of P, i.e., $X \subseteq X'$
2. the objective value in P' is no worse than that of P for all x in the domain of P, i.e., $c(x) \geq f(x)$ for all x in X (*for minimization*).

Propositions:

- ◆ If P' is a relaxation of P, then $z' \leq z$ (*in case of minimization*)
- ◆ If P' is infeasible, then P is infeasible
- ◆ If x^* solves P' and is feasible in P (i.e., $x^* \in X$), and $f(x^*) = c(x^*)$, then x^* solves P

These propositions imply that a relaxation can be used to fathom nodes of a search tree (*branch-&-bound method*).