

Jackson Network of Queues

This Hypercard stack was prepared by:
 Dennis L. Bricker,
 Dept. of Industrial Engineering,
 University of Iowa,
 Iowa City, Iowa 52242
 e-mail: dennis-bricker@uiowa.edu

author

Jackson Network of Queues

a collection of queues with *exponential* service times in which customers travel from one queue to another according to a Markov chain--

©Dennis Bricker, U. of Iowa, 1997

Jackson Network of Queues

- the network consists of N service centers, where service center i contains c_i identical servers and a queue with *infinite* capacity
- customers from outside the network (called *exogenous customers*) arrive at service center i according to a Poisson process with rate λ_i . (*Arrival processes are independent.*)

©Dennis Bricker, U. of Iowa, 1997

Jackson Network of Queues

- after receiving service at center i , a customer leaves the network with probability $p_{io} \geq 0$ or goes instantaneously to service center j with probability p_{ij}

(independent of number of customers at that center or number in the system)

©Dennis Bricker, U. of Iowa, 1997

Jackson Network of Queues

- customers arriving at center i are served FIFO (first-in-first-out), and service times are exponentially distributed with mean $1/\mu_i(s_i)$ where s_i = # of customers at center i .

(Service rate at each center may depend only on the number of customers at that center.)

©Dennis Bricker, U. of Iowa, 1997

Let $X_i(t)$ = # of customers at service center i at time t

State of system: $s = (s_1, s_2, \dots, s_N)$

$P(s; t) = P(s_1, s_2, \dots, s_N; t) = P(X_i(t) = s_i, i=1, 2, \dots, N)$

Steady-state distribution

$$\pi_s = \lim_{t \rightarrow \infty} P(s; t)$$

Jackson Networks of queues have the very nice property that the steady-state distribution has a *product* form:

$$\pi_s = \pi_{s_1}^1 \times \pi_{s_2}^2 \times \dots \times \pi_{s_N}^N$$

©Dennis Bricker, U. of Iowa, 1997

 Open Jackson Networks

$$\lambda_i > 0 \text{ for some } i$$

$$p_{jo} \neq 0 \text{ for some } j$$

At one or more service centers, customers may arrive from outside network &/or depart the network

- If $\lambda_i > 0$ for some i , the network is *open*.

 Open Jackson Networks

Customers may arrive from outside the system, and may depart the system.
The total number of customers in the network fluctuates.

 Closed Jackson Networks

$$\lambda_i = 0 \text{ & } p_{io} = 0 \forall i$$

customers circulate among service centers, but no exogenous arrivals or departures

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Recall that for the two infinite-capacity tandem queues, the balance equations were satisfied by

$$\pi_{S_1, S_2} = \pi_{S_1}^1 \times \pi_{S_2}^2 \quad (\text{product-form distribution})$$

where

$$\pi_{S_i}^i = (1 - \rho_i) \rho_i^{S_i}, \quad \rho_i = \frac{\lambda_i}{\mu_i}$$

is the steady-state distribution for the M/M/1 queue!

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Traffic Equations

Let λ_i = exogenous arrival rate at service center i
 α_i = *departure* rate in steady state at service center i

$\left. \begin{array}{l} \text{average rate} \\ \text{of departures} \end{array} \right\} = \left\{ \begin{array}{l} \text{average rate} \\ \text{of arrivals} \end{array} \right\}$

Then

$$\alpha_i = \lambda_i + \sum_{j=1}^N \alpha_j p_{ji} \quad \text{for } i=1, 2, \dots, N$$

Given λ_i and p_{ij} , this system of linear equations has a unique, nonnegative solution

$\rho_i^{n-c_i}$

Jackson's Theorem

and

$$\pi_s = \prod_{i=1}^N \Psi_i(s_i)$$

where

$$\Psi_i(n) = \begin{cases} \Psi_i(0) \frac{(c_i \rho_i)^n}{n!} & \text{if } n \leq c_i \\ \Psi_i(0) \frac{(c_i \rho_i)^n}{c_i! c_i^{n-c_i}} & \text{if } n \geq c_i \end{cases}$$

and $\Psi_i(0)$ is a normalizing constant which is chosen to yield

$$\sum_{n=0}^{\infty} \Psi_i(n) = 1 \quad \text{for each } i.$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Traffic Equations

Since, in steady state, the composite rate of arrivals (external & internal) must equal the rate of departure of each center,

α_i = composite arrival rate in steady state at service center i

$$\alpha_i = \lambda_i + \sum_{j=1}^N \alpha_j p_{ji} \quad \text{for } i=1, 2, \dots, N$$

Example

©Dennis Bricker, U. of Iowa, 1997

Traffic equations

1	2	3	ω
1	0	0	4
-0.33333	1	0	0
-0.66667	-1	1	0

(ω =exogenous arrival rates)

$$\alpha_i = \lambda_i + \sum_j \alpha_j p_{ij} \quad \forall i$$

$$\text{i.e., } \begin{cases} \alpha_1 = \lambda_1 \\ \alpha_2 = 0 + \alpha_1 p_{12} \\ \alpha_3 = 0 + \alpha_1 p_{13} + \alpha_2 \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

Solution of Traffic equations: Net Arrival Rates:

node	1	2	3
rate	4	1.3333	4
min c	2	1	1

i.e.,
$$\left\{ \begin{array}{l} \alpha_1 = 4/\text{hr} \\ \alpha_2 = \frac{4}{3} / \text{hr} \\ \alpha_3 = 4/\text{hr} \end{array} \right.$$

Steady-State Distribution

i	1	2	3
0	0.200000	0.333333	0.333333
1	0.266667	0.222222	0.222222
2	0.177778	0.148148	0.148148
3	0.118519	0.098765	0.098765
4	0.079012	0.065844	0.065844
5	0.052875	0.043896	0.043896
6	0.035117	0.029264	0.029264
7	0.023411	0.019509	0.019509
8	0.015607	0.013006	0.013006
...

For example,

$$\pi_{0,0,0} = \pi_0^1 \times \pi_0^2 \times \pi_0^3$$

$$= \frac{1}{5} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{45}$$

$$= 0.022222$$

$$\pi_{1,1,1} = \pi_1^1 \times \pi_1^2 \times \pi_1^3$$

$$= \frac{4}{15} \times \frac{2}{9} \times \frac{2}{9} = \frac{16}{1215}$$

$$= 0.0131687$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Expected number of visits
to nodes of a Jackson network,
beginning at any node,
before unit exits the network

to	1	2	3
f			
r			
o	1	0.333333	1
m	2	0	1
3	0	0	1

i	L _q	W _q	L	W
1	1.066667	0.266667	2.400000	0.600000
2	1.333333	1.000000	2.000000	1.500000
3	1.333333	0.333333	2.000000	0.500000

L_q=length of queueW_q=waiting time

L=# at node

W=time at node

(times are time/visit to node) (hours)

Totals: Sum of L_q = 3.7333, Sum of L (L_{total}) = 6.4

Average total time in system (by Little's Law):

W_{total} = L_{total} / sum of exogenous arrival rates (4)W_{total} = 1.6

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

*** FILE STATISTICS ***

FILE NUMBER	AVERAGE LENGTH	STD DEV.	MAX LENGTH	CURRENT LENGTH	AVERAGE WAIT TIME
1 QUEUE	1.079	2.254	10	3	15.892
2 QUEUE	2.529	2.577	9	0	112.391
3 QUEUE	1.182	1.918	9	7	17.672

*** SERVICE ACTIVITY STATISTICS ***

ACT NUM	ACT START	ACT LABEL OR NODE	SER CAP	ACT AVG UTIL	STD DEV	CUR UTIL	MAX IDL TME/SER	MAX BSY TME/SER	ENT CNT
1	QUEUE		2	1.298	0.79	2	2.00	2.00	321
2	Q2	QUEUE	1	0.775	0.42	0	214.25	1000.71	108
3	Q3	QUEUE	1	0.659	0.47	1	164.87	372.59	313

- If $\lambda_i = 0$ & $p_{io} = 0 \forall i$ the network is *closed*.

** STATISTICS FOR VARIABLES BASED ON OBSERVATION **

MEAN VALUE	STANDARD DEVIATION	COEFF OF VARIATION	MINIMUM VALUE	MAXIMUM VALUE	NO. OF OBS
0.112E+03	0.105E+03	0.935E+00	0.526E+01	0.483E+03	313

Average time in system
112 minutes = 1.86667 hours

Closed
Jackson
Networks

No exogenous arrivals or departures from the system... the total number of customers in the system remains constant!

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Traffic Equations

Let α_i = *departure rate* in steady state at service center i

$$\left. \begin{array}{l} \text{average rate} \\ \text{of departures} \end{array} \right\} = \left\{ \begin{array}{l} \text{average rate} \\ \text{of arrivals} \end{array} \right\}$$

Then

$$\alpha_i = \sum_{j=1}^N \alpha_j p_{ji} \quad \text{for } i=1,2,\dots,N$$

Because the system of equations is homogeneous, the solution is not unique! Any multiple of a solution is also a solution.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Jackson's Theorem for Closed Networks

Let $M = \#$ of customers in the system

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)$ be any nonnegative, nonzero solution of the traffic equations, and let $\rho_i \equiv \frac{\alpha_i}{c_i \mu_i}$

The possible states of the system are elements of

$$S = \{ s \mid \sum_{i=1}^N s_i = M \}$$

Then the steady-state probabilities are given by

where

$$\pi_s = K \prod_{i=1}^N \Psi_i(s_i) \quad \text{for } s \in S$$

$$\Psi_i(n) = \begin{cases} \frac{(c_i \rho_i)^n}{n!} & \text{if } n \leq c_i \\ \frac{(c_i \rho_i)^n}{c_i! c_i^{n-c_i}} & \text{if } n \geq c_i \end{cases} \quad \text{product form of joint dist'n}$$

and K is a "normalizing constant"

such that $\sum_{s \in S} \pi_s = 1$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

The steady-state distribution for this cyclic network of 2 queues & 4 customers is also of the product form:

4 = $M = \#$ units in system
2 = $N = \#$ nodes in system

i	n	μ
1	1	1
2	1	2

Let

$$\mu_1 = 1/\text{hr.}$$

$$\mu_2 = 2/\text{hr.}$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Traffic equations

1	2	b
-1	-1	0
1	1	1

(Solution is not unique; last row normalizes α)

Solution of Traffic equations: Arrival Rates:

$$\begin{array}{cc} \text{node 1} & 2 \\ \text{rate} & 0.5 \end{array}$$

©Dennis Bricker, U. of Iowa, 1997

i	1	2
0	1.000000	1.000000
1	0.500000	0.250000
2	0.250000	0.062500
3	0.125000	0.015625
4	0.062500	0.003906

Normalizing constant $K: 8.2581$

of states = 5

$$\Psi_i(n) = \begin{cases} \frac{(c_i \rho_i)^n}{n!} & \text{if } n \leq c_i \\ \frac{(c_i \rho_i)^n}{c_i! c_i^{n-c_i}} & \text{if } n \geq c_i \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

	Ψ_1	Ψ_2
1	1	2
0	1.000000	1.000000
1	0.500000	0.250000
2	0.250000	0.062500
3	0.125000	0.015625
4	0.062500	0.003906

Calculating the
Normalizing
Constant K

$$\sum_{s \in S} \Psi_1(s_1) \times \Psi_2(s_2) = (1.0)(0.003906) + (0.5)(0.015625) + (0.25)(0.0625) + (0.125)(0.25) + (0.0625)(1.0) = 0.1210935$$

So, in order that the probabilities will sum to 1.0,

$$K = \frac{1}{0.1210935} = 8.2580816$$

For large values of M (# customers) and N (# of service centers), the number of elements of the state set S will be extremely large, making the computation of K by enumerating the possible states very burdensome.

There are, however, recursive methods of computing K which avoid much of the computational burden.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Once K is found, then the probability of each state may be computed:

Steady-State
Distribution

#	1 2	PI
1	0 4	0.032258
2	1 3	0.064516
3	2 2	0.12903
4	3 1	0.25806
5	4 0	0.51613

$$\pi_{0,4} = K \Psi_1(0) \times \Psi_2(4) = 8.2580816 \times 1.0 \times 0.003906$$

Average Numbers
at Nodes

i	L
1	3.16129032
2	0.83870968

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Unlike the case of the open Jackson Network, we do not know the average arrival rates at the service centers, and so we cannot use Little's Formula to compute the average waiting time at each service center!

Let's try forming a SLAM model of the 2 cyclic queues:

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

3 customers initially in queue #1 implies that server #1 is busy, i.e., that there are initially 4 customers in the network.

SLAM
network

*** FILE STATISTICS ***

FILE NUMBER	AVERAGE LENGTH	STD DEV.	MAX LENGTH	CURRENT LENGTH	AVERAGE WAIT TIME
-------------	----------------	----------	------------	----------------	-------------------

1 Q1 QUEUE	2.178	1.005	3	3	2.204
2 Q2 QUEUE	0.363	0.749	3	0	0.368

Lq

*** SERVICE ACTIVITY STATISTICS ***

ACT NUM	ACT START	LABEL	OR SER CAP	Avg UTIL	STD DEV	CUR UTIL	MAX IDL TME/SER	MAX BSY TME/SER	ENT CNT
1 Q1 QUEUE	1	0.968	0.10	1	3.00	191.49	4740		
2 Q2 QUEUE	1	0.491	0.50	0	10.74	12.10	4740		

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997