



If the objective function Φ_i is quadratic in X & Y, and the transition function Ψ_i is linear in X & Y (the QC/LD case), we have a closed-form solution for the problem.

Otherwise, we can try successively approximating the problem by a QC/LD problem.

Step 0: "Guess" at a decision sequence $\overline{Y}_1, \overline{Y}_2, ... \overline{Y}_N$

Step 1: Use the transition functions together with the initial state X_1 to compute a trajectory $\overline{X}_1, \overline{X}_2, \overline{X}_3, ... \overline{X}_N$

Step 2: Compute $\Phi_i(\overline{X}_i,\overline{Y}_i)$, its gradient $\nabla\Phi_i(\overline{X}_i,\overline{Y}_i)$

i.e.,
$$\frac{\partial}{\partial X_i} \Phi_i(\overline{X}_i, \overline{Y}_i), \frac{\partial}{\partial Y_i} \Phi_i(\overline{X}_i, \overline{Y}_i)$$

and its Hessian matrix $\nabla^2 \Phi_i(\overline{X}_i, \overline{Y}_i)$, i.e.,

$$\frac{\boldsymbol{\partial}^2}{\boldsymbol{\partial} \boldsymbol{X}_i^2} \, \boldsymbol{\Phi}_i \, (\overline{\boldsymbol{X}}_i, \overline{\boldsymbol{Y}}_i \,), \, \frac{\boldsymbol{\partial}^2}{\boldsymbol{\partial} \boldsymbol{X}_i \boldsymbol{\partial} \boldsymbol{Y}_i} \, \boldsymbol{\Phi}_i \, (\overline{\boldsymbol{X}}_i, \overline{\boldsymbol{Y}}_i \,), \quad \& \frac{\boldsymbol{\partial}^2}{\boldsymbol{\partial} \boldsymbol{Y}_i^2} \, \boldsymbol{\Phi}_i \, (\overline{\boldsymbol{X}}_i, \overline{\boldsymbol{Y}}_i \,)$$

⊕Dennis Bricker, U. or Iowa, 1998

⊕Dennis Bricker, U. or Iowa, 1998

Step 3: Approximate the cost at each stage by the *Taylor series* expansion about up to & including the quadratic terms:

$$\begin{split} & \Phi_i \left(X_i, Y_i \right) \approx & \Phi_i \left(\overline{X}_i, \overline{Y}_i \right) + \frac{\partial \Phi}{\partial X_i} (\overline{X}_i, \overline{Y}_i^-) (X_i - \overline{X}_i^-) + \frac{\partial \Phi}{\partial Y_i} (\overline{X}_i, \overline{Y}_i^-) (Y_i - \overline{Y}_i^-) \\ & + \frac{1}{2} \left[- \frac{\partial^2 \Phi}{\partial X_i^2} (\overline{X}_i, \overline{Y}_i^-) (X_i - \overline{X}_i^-)^2 + \frac{\partial^2}{\partial X_i \partial Y_i^-} \Phi_i \left(\overline{X}_i, \overline{Y}_i^- \right) (X_i - \overline{X}_i^-) (Y_i - \overline{Y}_i^-) \right] \end{split}$$

$$+ \frac{\partial^2 \Phi}{\partial Y_i^2} (\overline{X}_i, \overline{Y}_i) (Y_i - \overline{Y}_i)^2$$

Step 4: Approximate the transition function by a linear function:

$$\begin{split} X_{i+1} &= \Psi_i \left(X_i, Y_i \right) \approx & \Psi_i \left(\overline{X}_i, \overline{Y}_i \right) + \frac{\partial \Psi}{\partial X_i} (\overline{X}_i, \overline{Y}_i) \left(X_i - \overline{X}_i \right) \\ &+ \frac{\partial \Psi}{\partial Y_i} (\overline{X}_i, \overline{Y}_i) \left(Y_i - \overline{Y}_i \right) \end{split}$$

⊕Dennis Bricker, U. or Iowa, 1998

Step 5: Use the closed-form solution to the QC/LD problem to compute the optimal decisions $\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, \dots \hat{Y}_N$

Step 6: Use the transition functions, together with initial state X_1 and decisions $\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, \dots \hat{Y}_N$ to compute the new trajectory

$$\hat{X}_{i+1} = \Psi_i (\hat{X}_i, \hat{Y}_i)$$
, $i=1,2,3,...N$

Step 7: If the termination criterion is not satisfied, let $\overline{X} = \hat{X}$ and $\overline{Y} = \hat{Y}$, and return to step 2.

⊕Dennis Bricker, U. or Iowa, 1998

Example

Minimize
$$Y_1^4 + X_2^4 + Y_2^4 + X_3^4$$

subject to
$$\begin{cases} X_{i+1} = X_1^2 + 4 Y_i, i=1,2 \\ X_1 = 2 \end{cases}$$

$$\overline{Y}_1 = -1$$
, $\overline{Y}_2 = -0.1$

@Dennis Bricker, U. or Iowa, 1998

@Dennis Bricker, U. or Iowa, 1998

Problem Statement

The example problem in the SAMDP.FNS file is:

Minimize (Y[1]*4) + (X[2]*4) + (Y[2]*4) + (X[3]*4) subject to

X[T+1] + (X[T]*2) + (4×Y[T]), T=1,2

X[1] = 2

A good starting 'guess' at the optimal decisions is $\label{eq:continuous} Y = \mbox{$^{-1}$, $^{-0}$.1}$

Test Problem 🛘 Sequential Approximation Method

Number of stages: N = 2

Objective Function

Z+T FN XY R Objective Function for SAMDP R Z+(0 1 1)[T]×XY[1]*4 +0 IF N<T Z+Z+(1 1 0)[T]×XY[2]*4

⊕Dennis Bricker, U. or Iowa, 1998

Gradient of Objective Function

G+T GRADF XY a Gradient of objective function for example problem a $G \leftarrow (0\ 1\ 1)[T] \times 4 \times XY[1] \star 3$ $+ \text{Last IF N} < T \qquad \lozenge G - G, 0 \qquad \lozenge \rightarrow 0$ $\text{Last: } G + G, (1\ 1\ 0)[T] \times 4 \times XY[2] \star 3$

⊕Dennis Bricker, U. or Iowa, 1998

Hessian of Objective Function

H+T HESSIAN XY

R
R
Hessian matrix for objective function of example problem
R
H+2 2p0
H(1;1)+(0 1 1)[T]×12×XY[1]*2

→0 IF N<T
H(2;2)+(1 1 0)[T]×12×XY[2]*2

⊕Dennis Bricker, U. or Iowa, 1998

Transition function

Z+T PHI XY Representation function for example problem Representation at 4×10^{-1} cm 1.0×10^{-1} c

Gradient of Transition Function

G+T GRADPHI XY $_{\rm R}$ $_{\rm R}$ Gradient of transition function for example problem $_{\rm R}^{\rm R}$ G+(2×XY[11),4

⊕Dennis Bricker, U. or Iowa, 1998

Iteration 1

QC/LD Approximation at:

i 1 2 3 X[i] 2 0 -0.4 Y[i] -1 -0.1 0

Objective function value is 1.0257

Т	A	В	С	D	E	F	G	Н	K
0 1 2	0 0 0.96	0	6 0.06 0	0 0 0.512	12 0.012 0	7 0.0007 0.0768		4 4 0	-4 0 0

⊕Dennis Bricker, U. or Iowa, 1998

Solution of QC/LD Approximation is:

i 1 2 3 X(i) 2 0 70.267185 Y(i) 71 70.0667964 0

Sum of |Y-Y'| = 0.0332036

⊕Dennis Bricker, U. or Iowa, 1998

Iteration 2

QC/LD Approximation at:

1	. В	С	D	E	F	G	Η	K
0	0	6	0	12	7	4	4	-4
0	0	0.02677	0	0.003576	0.0001393	0	4	0
0.428	1328 0	0	0.152591	0	0.0152888	0	0	0

Solution of QC/LD Approximation is:

$$\begin{smallmatrix} 1 & 1 & 2 & & 3 \\ X\text{(ii)} & 2 & 0 & & -0.17847 \\ Y\text{(ii)} & -1 & -0.0446175 & 0 \end{smallmatrix}$$

Sum of |Y-Y'| = 0.0221788

