

given initial state X1,

$$\begin{split} \text{Minimize } \sum_{t=1}^{T} \left\{ & \text{ X_t' $A_t X_t$ + X_t' $B_t Y_t$ + Y_t' $C_t Y_t$ } \\ & + & d_t X_t + e_t Y_t + f_t \right\} \\ & + & \text{ X_{t+1}' $A_{t+1} X_{t+1}$ + $d_{t+1} X_{t+1}$ + f_{t+1}} \\ & \text{where } & \text{ X_{t+1} = $G_t X_t$ + $H_t Y_t$ + k_t , $t=1,2,...T} \end{split}$$

@Dennis Bricker II ot Iowe 1998

given initial state X1,

$$\begin{aligned} \text{Minimize } \sum_{t=1}^{T} \left\{ & \text{ X_t' $A_t X_t + X_t' $B_t Y_t + Y_t' $C_t Y_t$} \\ & + & d_t X_t + e_t Y_t + f_t \right\} \\ & + & \text{ X_{t+1}' $A_{T+1} X_{T+1} + d_{T+1} X_{T+1}$ } + f_{T+1} \end{aligned}$$
 where $X_{t+1} = G_t X_t + H_t Y_t + k_t$, $t=1,2,...T$

 A_t is nxn, B_t is nxm, C_t is mxm, d_t is n-vector, e_t is m-vector, etc.

Optimal Value Function:

ID**I**P approach

 $V_t(X)$ = minimum cost of stages t, t+1, ... T+1 given that the state at stage t is X

Can be evaluated recursively, and will be of the form

$$V_t(X) = X'P_t X + q_t X + r_t$$

(Clearly true for t=T+1)

⊕Dennis Bricker, U. of Iowa, 1998

To compute recursively the quantities P, q, and r, at stage t, first compute

$$\begin{cases} S_t = C_t + H'_t P_{t+1} H_t & (mxm) \\ t_t = e_t + 2H'_t P_{t+1} k_t + H'_t q_{t+1} & (m-vector) \end{cases}$$

$$U_t = B'_t + 2H'_t P_{t+1} G_t & (mxn)$$

where $P_{T+1} = A_{T+1}$, $q_{T+1} = d_{T+1}$, $r_{T+1} = f_{T+1}$

⊕Dennis Bricker, U. of Iowa, 1998

Then compute

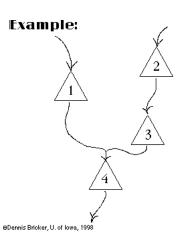
$$\begin{cases} P_t = A_t + G_t' P_{t+1} G_t - \frac{1}{4} U_t' S_t^{-1} U_t \\ \\ q_t = d_t + 2 k_t' P_{t+1} G_t + q_{t+1} G_t - \frac{1}{2} t_t' S_t^{-1} U_t \\ \\ r_t = f_t + k_t' P_{t+1} k_t + q_{t+1} k_t + r_{t+1} - \frac{1}{4} t_t' S_t^{-1} t_t \end{cases}$$

Optimal decisions:

$$Y_t = -\frac{1}{2} S_t^{-1} [U_t X_t + t_t]$$

⊕Dennis Bricker, U. of Iowa, 1998

⊕Dennis Bricker, U. of Iowa, 1998



Multi-Reservoir Operation

Example: Multi-Reservoir Operation

State Variable

X_{ti} = volume of water in reservoir #i at the start of period t

Decision Variable

Y_{ti}= volume released from reservoir #i during period t

Let
$$\hat{X}_{ti}$$
 = target storage volume \hat{Y}_{ti} = target release

Our objective is to minimize the weighted sum of the squared deviations from the targets:

$$\text{Minimize } \sum_{i} \sum_{t} \alpha_{it} \! \left(\! \hat{Y}_{it} - Y_{it} \! \right)^2 \! + \beta_{it} \! \left(\! \hat{X}_{it} - X_{it} \! \right)^2$$

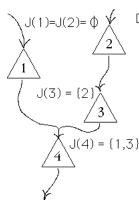
⊕Dennis Bricker, U. of Iowa, 1998

Transition Equations

$$X_{i,t+1} = (1 - e_{it}) X_{it} + \sum_{j \in J(i)} Y_{jt} - Y_{it} + I_{it}$$

linear dynamics/

In reality, evaporation losses are nonlinear functions of volume, being approximately linear in the surface area of the reservoir.



Define

J(i) = set of reservoirs immediately upstream from reservoir #i

e_{it} = evaporation rate of reservoir #i in period t

 I_{it} = inflow (exclusive of upstream releases)

QC/LD problem

⊕Dennis Bricker, U. of Iowa, 1998

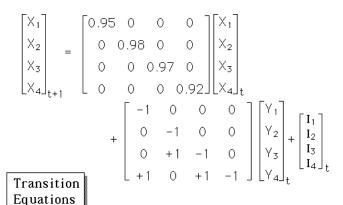
$$\text{Minimize } \sum_{i} \sum_{t} \alpha_{it} \! \left(\! \hat{Y}_{it} - Y_{it} \! \right)^2 \! + \beta_{it} \! \left(\! \hat{X}_{it} - X_{it} \! \right)^2$$

subject to

$$X_{i,t+1} = (1 - e_{it}) X_{it} + \sum_{j \in J(i)} Y_{jt} - Y_{it} + I_{it}$$

where the initial storage volumes X_{i1} are given.

⊕Dennis Bricker, U. of Iowa, 1998



⊕Dennis Bricker, U. of Iowa, 1998

INFLOWS 100 80 30 40 90 75 25 35 110 90 30 50

0.05 0.02 0.03 0.08

(expected) inflows into 4 reservoirs during the 3 periods

Evaporation rates of the three reservoirs

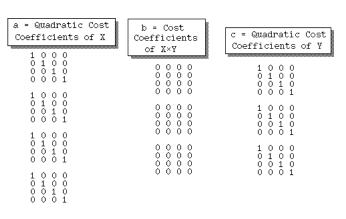
Adjacency Matrix

⊕Dennis Bricker, U. of Iowa, 1998

STORAGEATARGET					
90 100 80 90	75 80 70 75	100 110 90 100	200 190 195 180		
		_			

PENAS	PEN△R	Г
1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	هم
α	β	

INIT	'IAL	∆ST(ORAG1	E
100	80	90	220	***************************************



Dennis Bricker, U. of Iowa. 1998

d = Linear Cost Coefficients of X	
-180 -150 -200 -400 -200 -160 -220 -380 -160 -140 -180 -390 -180 -150 -200 -360	
e = Linear Cost Coefficients of Y	
-200 -150 -200 -500 -180 -140 -180 -440 -220 -160 -220 -500	300000
f = Constants in Cost Function 151850 134100 150525 56125	

⊕Dennis Bricker, U. of Iowa, 1998

Initialize:

$$P_{T+1} = A_{T+1}, q_{T+1} = d_{T+1}, r_{T+1} = f_{T+1}$$

For t=T, T-1, ...2,1, compute:

$$\begin{split} S_t &= C_t + H_t' P_{t+1} H_t \\ t_t &= e_t + 2 H_t' P_{t+1} k_t + H_t' q_{t+1} \\ U_t &= B_t' + 2 H_t' P_{t+1} G_t \\ P_t &= A_t + G_t' P_{t+1} G_t - \frac{1}{4} U_t' S_t^{-1} U_t \\ q_t &= d_t + 2 k_t' P_{t+1} G_t + q_{t+1} G_t - \frac{1}{2} t_t' S_t^{-1} U_t \\ r_t &= f_t + k_t' P_{t+1} k_t + q_{t+1} k_t + r_{t+1} - \frac{1}{4} t_t' S_t^{-1} t_t \end{split}$$

⊕Dennis Bricker, U. of Iowa, 1998

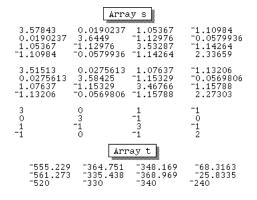
Array q

-506.702 -493.292 -541.144 -685.525 -457.738 -419.76 -485.065 -617.351 -324.565 -288.265 -347.403 -543.135 -180 -150 -200 -360

Array r

141203 122073 92082.3 56125

⊕Dennis Bricker, U. of Iowa, 1998



_		Coeffi nsitio	
0.95 0 0 0	0.98 0.98	0 0 0.97 0	0 0 0 0.92
0.95 0 0 0	0 0.98 0	0 0.97 0	0 0 0 0.92
0.95 0 0 0	0 0.98 0 0	0 0 0.97 0	0 0 0 0.92

⊕Dennis Bricker, U. of Iowa, 1998

Array p				Results
1.75247	0.150234	0.18517	0.26271	
0.150234	1.97463	0.489517	0.183195	
0.18517	0.489517	1.65924	0.234675	
0.26271	0.183195	0.234675	1.36283	
1.69534	0.0988062	0.137776	0.22675	
0.0988062	1.85358	0.396428	0.135955	
0.137776	0.396428	1.58418	0.193948	
0.22675	0.135955	0.193948	1.33659	
1.52403	0.0300323	0.0594516	0.140968	
0.0300323	1.58863	0.214652	0.0581677	
0.0594516	0.214652	1.42492	0.115148	
0.140968	0.0581677	0.115148	1.27303	
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	0	0	1	

⊕Dennis Bricker, U. of Iowa, 1998

$V_1(X) = X'P_1 X + q_1X + r_1$	Optimal total cost
$= \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{bmatrix} 50234 & 0.18517 & 0.26271 \\ 7463 & 0.489517 & 0.183195 \\ 89517 & 1.65924 & 0.234675 \\ 83195 & 0.234675 & 1.36283 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} $
+ [-506.702 -493.292 -541	83195 0.234675 1.36283 $\begin{bmatrix} X_3 \\ X_4 \end{bmatrix}$.144 -685.525 $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$ + 141203
= $1.75247X_1^2 + 2(0.150234)X_1X_1$	₂ + + 1.36283X ₄ ²
-506.7	02X ₁ 685525X ₄ + 141203

where X= 100 80 90 220

⊕Dennis Bricker, U. of Iowa, 1998

Array u						
-2.79031	0.0728113	0.108974	2.04211			
0.0740428	-2.85602	2.30423	0.106708			
0.169051	-0.510528	-2.69705	2.10247			
-0.430826	-0.266471	-0.37626	-2.45933			
-2.62782	0.0551455	0.108052	2.083			
0.0558968	-2.693	2.34793	0.104844			
0.154881	-0.306708	-2.54096	2.13051			
-0.267839	-0.114009	-0.223388	-2.34238			
-1.9 0 0	0 -1.96 0 0	0 1.94 -1.94 0	1.84 0 1.84 -1.84			

Forward Computations of Optimal States & Decisions

Stage 1

State X= 100 80 90 220 Decision Y= 99.2614 82.817 98.9775 249.029

Stage 2

State X= 95.7386 75.583 101.14 191.61 Decision Y= 95.4911 73.3701 99.8843 217.195

Stage 3

⊕Dennis Bricker, U. of Iowa, 1998

State X= 85.4606 75.7012 96.5911 189.461 Optimal value is 1200.51

⊕Dennis Bricker, U. of Iowa, 1998

Optimal Solution QC/LD Problem State Variables (Storage Volumes) Reservoir ţ 100 95.7386 85.4606 90 101.14 96.5911 220 191.61 189.461 80 75.583 75.7012 Reservoir 2 3 ţÌ 4 Variables 98.9775 99.8843 82.817 73.3701 249.029 217.195

⊕Dennis Bricker, U. of Iowa, 1998