Quadratic Criterion / Linear Dynamics

Consider a (finite) N-stage **non-stationary** Markov decision process with

- continuous state and decision variables,
- a convex *quadratic* cost at each stage (or concave return, if maximizing), and
- *linear* relationship between the future state and the current state & decisions.

In the most general case, if x_n is the vector of *state* variables and y_n the vector of *action* or decision variables, the *cost* at stage *n* is the quadratic function

$$c_n(x_n, y_n) = x_n A_n x_n + x_n B_n y_n + y_n C_n y_n + d_n x_n + e_n y_n + f_n$$

and the *transition* at stage n is defined by the linear function

$$x_{n+1} = G_n x_n + H_n y_n + \xi_n$$

where $\xi_1, \xi_2, \dots, \xi_N$ are independent *random* vectors such that

 $|E(\xi_{ni})| < \infty$ and $|E(\xi_{ni}\xi_{nj})| < \infty$

for all i, j, and n. (Here, ξ_{ni} denotes the ith element of the vector ξ_{n} .)

Note: independence of the random vectors means that the process is memoryless, or Markovian.

(i) See One-Dimensional QC/LD Problem

QC/LD	page 1	©D.L.Bricker	QC/LD	page 2	©D.L.Bricker

Suppose for each n = 1, 2, ...N, the matrix A_n is **positive definite**, the matrix $B_n = 0$, and the matrix C_n is **positive semidefinite** (\Rightarrow *convexity*).

Then the **optimal value** function is **quadratic** of the form

$$f_n(x) = xP_nx + q_nx + r_n$$

where P_n is positive semidefinite, (so $f_n(x)$ is convex) and

the optimal **decision rule** is **linear**,

$$y_n = W_n x_n + v_n$$

for *n*=1, 2, ...*N*.

The closed-form expressions for P_n , q_n , r_n , W_n and v_n are quite messy! See the section on the one-dimensional QC/LD problem for a derivation of a special case.

page 4

Example: The following simple example suggests the validity of a certainty equivalence result for QC/LD problems.

Consider the problem of choosing y so as to minimize

$$V(x,y) = E\left[c\left(gx + hy + \xi\right)^2\right]$$

where

- x, g, h, and c are numbers, and
- ξ is a **random** variable with **mean** μ and **variance** σ^2 .

Then

$$V(x,y) = ch^{2}y^{2} + 2ch(gx + \mu)y + c(g^{2}x^{2} + \sigma^{2} + \mu^{2} + 2g\mu x)$$

We next compute the first and second derivatives of V(x, y).

Certainty Equivalence

Furthermore, the optimal decision rule for stage n=1 depends only upon the *expected values* of the distributions of the random vectors $\xi_1, \xi_2, ..., \xi_N$. Thus the computations may be performed by replacing each ξ_n by its expected value μ_n , a result which is known as **Certainty**

Equivalence!

The major deficiency of the QC/LD model & algorithm is the lack of ability to restrict the state and decision variables (e.g., nonnegativity).

① See the example of the **multi-reservoir control** problem for further discussion of imposing **constraints**.

page 6

©D.L.Bricker

The first and second **derivatives** of V are

$$\frac{\partial}{\partial x}V(x,y) = 2ch^2y + 2ch(gx + \mu)$$

and

QC/LD

$$\frac{\partial^2}{\partial x^2} V(x, y) = 2ch^2$$

If c>0 and $h \neq 0$, V is convex and the unique minimum of V is achieved at

$$y = -\frac{gx + \mu}{h} = -\left(\frac{g}{h}x + \frac{\mu}{h}\right)$$

Notes:

- The optimal value of y depends only upon the *expected value* of ξ.
- The optimal value of y is given by a *linear decision rule*, i.e., a linear function of x.

See Daniel P. Heyman & Matthew J. Sobel, *Stochastic Models in Operations Research, Volume II: Stochastic Optimization,* McGraw-Hill Book Co., 1984, section 7-5.

QC/LD

Th_{a}	$II_{1+} M_{2}$	dialiani	Muth Cim	on IIMMC		model
ine	TOIL-IVIC	лавнан	-wuun-əm			moder
		0			/ モー/	

for production planning has

state variables $x_n = (i_n, z_n)$ where

 i_n = inventory level at stage n

 w_{n-1} = previous work force level

decision variables $y_n = (z_n, w_n)$ where

 z_n = production level at stage n

 w_n = work force level at stage n

Expected cost function is

$$\sum_{n} E \Big[c \big(w_n - \alpha w_{n-1} \big) + h \big(i_n + z_n - D_n \big) + b \big(z_n \big) + d \big(\beta w_n - z_n \big) \Big]$$

with convex (linear or quadratic) functions

 $c(\cdot)$ is cost of work force smoothing

 $h(\cdot)$ is cost of holding inventory

 $b(\cdot)$ is cost of production

 $d(\cdot)$ is cost of overtime/undertime labor

and

 α is retention rate for work force

 β is production rate of a worker

The optimal solution is, of course, a linear decision rule, but one

which may yield negative values of the decision variables!

C.C. Holt, F. Modigliani, J. F. Muth, and H. A. Simon, *Planning Production*, *Inventories, and Work Force*, Prentice-Hall, 1960.

page 9

©D.L.Bricker

QC/LD

page 10

©D.L.Bricker