

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu

The Poisson Process
as a limiting case of
the Bernoulli Process

©Dennis Bricker, U. of Iowa, 1997

Contents

- ☞ Poisson process as limiting case of the Bernoulli process
- ☞ Poisson distribution
- ☞ Exponential distribution
- ☞ Erlang (Gamma) distribution

Consider the following situation:

A time interval of length t seconds is divided into one-second intervals, with the probability of a vehicle arriving at an intersection during a one-second interval being a small number p . (Assume that the probability that more than one vehicle arrives is negligible.)

Consider the Bernoulli process $\{X_k; k=1,2,\dots\}$ where $X_k = 1$ if a vehicle arrives during the k^{th} second, and the associated counting process $\{N_t\}$ which counts the number of arrivals during the interval $[0,t]$.

Then N_t has the binomial distribution:

$$P(N_t = x) = \binom{t}{x} p^x (1-p)^{t-x}$$

with expected value $v = tp$.

©Dennis Bricker, U. of Iowa, 1997

$$\begin{aligned} P(N_t = x) &= \binom{n}{x} \left(\frac{v}{n}\right)^x \left(1 - \frac{v}{n}\right)^{n-x} \\ &= \frac{n!}{x!(n-x)!} \left(\frac{v}{n}\right)^x \left(1 - \frac{v}{n}\right)^{n-x} \\ &= \frac{v^x}{x!} \left(1 - \frac{v}{n}\right)^{n-x} \frac{n!}{(n-x)!} \end{aligned}$$

Consider what happens as we divide $[0,t]$ into n smaller time intervals, but in such a way that the expected number of arrivals in $[0,t]$ remains constant, v .

That is, the probability of an arrival in each of these small intervals must be v/n , and

$$P(N_t = x) = \binom{n}{x} \left(\frac{v}{n}\right)^x \left(1 - \frac{v}{n}\right)^{n-x}$$

©Dennis Bricker, U. of Iowa, 1997

Consider the limit of this distribution as $n \rightarrow +\infty$

$$\begin{aligned} P(N_t = x) &= \frac{v^x}{x!} \underbrace{\left(1 - \frac{v}{n}\right)^n}_{\downarrow} \underbrace{\frac{n!}{(n-x)!}}_{\parallel} \frac{1}{n^x \left(1 - \frac{v}{n}\right)^x} \\ &\stackrel{e^{-v}}{\rightarrow} \frac{n(n-1)(n-2) \dots (n-x+1)}{\underbrace{\left[n \left(1 - \frac{v}{n}\right)\right]^x}_{\rightarrow \frac{n^x}{n}}} \\ &\rightarrow \frac{1}{\frac{n^x}{n}} = 1 \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1997

$$P(N_t = x) = \frac{v^x}{x!} e^{-v}$$

If the arrival rate is λ /second, then $v = \lambda t$
and

$$P(N_t = x) = \frac{(\lambda t)^x}{x!} e^{-\lambda t}$$

for $x=0, 1, 2, 3, \dots$

Poisson
Distribution

$$P(N_t = x) = \frac{(\lambda t)^x}{x!} e^{-\lambda t}$$

for $x=0, 1, 2, 3, \dots$

Mean Value

$$E(N_t) = \lambda t$$

Variance

$$\text{Var}(N_t) = \lambda t$$

mean and variance are equal!

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Example

A left-turn lane at an intersection has a capacity of 3 autos. 30% of autos arriving at the intersection wish to turn left.

The **expected number** of autos arriving during a red signal is 6.

What is the probability that the capacity of the left-turn lane is exceeded during a red signal?

Given that N autos arrive, the number X of left-turning autos has the **binomial** distribution.

The number N of autos arriving during the red signal has the **Poisson** distribution.

$$P(X > 3 | N \text{ arrivals}) = \sum_{N=4}^{\infty} P(X > 3 | N \text{ arrivals}) P(N \text{ arrivals})$$

computed using binomial distn. *computed using Poisson distn.*

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

$$P(X > 3 | N \text{ arrivals}) = \sum_{x=4}^N \binom{N}{x} (0.3)^x (0.7)^{N-x}$$

binomial distn.

$$= 1 - \sum_{x=0}^3 \binom{N}{x} (0.3)^x (0.7)^{N-x}$$

$$P(N \text{ arrivals}) = \frac{6^N}{N!} e^{-6}$$

Poisson distn.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

N	P(N)	P(X N)	P(X N)P(N)
0	0.00247875	0.00000000	0.00000000
1	0.0149	0.00000000	0.00000000
2	0.0446	0.00000000	0.00000000
3	0.0892	0.00000000	0.00000000
4	0.1339	0.00810000	0.00108421
5	0.1606	0.03078000	0.00494398
6	0.1606	0.07047000	0.01213191
7	0.1377	0.12602600	0.01736226
8	0.1033	0.19410435	0.02004276
9	0.0688	0.27034090	0.01860986
10	0.0413	0.35038928	0.01447216
11	0.0225	0.43043766	0.00969731
12	0.0113	0.4748423	0.00571585
13	0.0052	0.53939436	0.00301227
14	0.0022	0.64482287	0.00143678
15	0.0009	0.70313207	0.00062687
...	0.1083

The probability that the capacity of the left-turn lane is exceeded during each red signal is about 11%

Time between arrivals

Suppose that the number of arrivals in an interval has the Poisson distribution with arrival rate λ /second.

Let T_1 = time of the first arrival.
What is the distribution of T_1 ?

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

$$P(T_1 > t) = P(\text{NO arrivals occur in interval } [0, t])$$

$$= \frac{(\lambda t)^0}{0!} e^{-\lambda t} = e^{-\lambda t}$$

Poisson distribution $P(N_t=0)$

$$\text{CDF: } P(T_1 \leq t) = F(t) = 1 - e^{-\lambda t}$$

$$\text{Density function: } f(t) = \frac{d}{dt} F(t) = \lambda e^{-\lambda t}$$

Exponential Distribution

$$F(t) = 1 - e^{-\lambda t}$$

Mean Value

$$E(T_1) = \frac{1}{\lambda}$$

Variance

$$\text{Var}(T_1) = \frac{1}{\lambda^2}$$

Exponential Distribution

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Example

Suppose that the arrival rate for northbound autos is 6 per 30 second red signal, i.e., 0.2/second

What is the distribution of the arrival time of the first auto?
(This will also be the distribution of the time between arrivals!)

$$f(t) = \lambda e^{-\lambda t}$$

Exponential Distribution

$$\lambda = 0.2/\text{sec.}$$

©Dennis Bricker, U. of Iowa, 1997

$$\lambda = 0.2/\text{sec.}$$

Exponential Distribution

Memoryless Property

Exponential Distribution

Suppose that it is known that, at time t_0 , the first arrival has not yet occurred, i.e., $T_1 > t_0$.

What is the conditional distribution of T_1 ?

That is, what is $P(T_1 \leq t | T_1 > t_0)$ for $t > t_0$?

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Memoryless Property

Exponential Distribution

Memoryless Property

Exponential Distribution

$$P(T_1 \leq t | T_1 > t_0) = \frac{P(T_1 \leq t \cap T_1 > t_0)}{P(T_1 > t_0)} = \frac{P(t_0 \leq T_1 \leq t)}{P(T_1 > t_0)}$$

$$= \frac{F(t) - F(t_0)}{1 - F(t_0)} = \frac{(1 - e^{-\lambda t}) - (1 - e^{-\lambda t_0})}{e^{-\lambda t_0}}$$

$$= \frac{e^{-\lambda t_0} - e^{-\lambda t}}{e^{-\lambda t_0}} = 1 - e^{-\lambda(t-t_0)}$$

$$P(T_1 \leq t | T_1 > t_0) = 1 - e^{-\lambda(t-t_0)} = P(T_1 \leq t - t_0)$$

If the time τ is reckoned from time t_0 , i.e., $\tau = t - t_0$, then

$$P(T_1 \leq t | T_1 > t_0) = P(T_1 \leq t - t_0) = P(T_1 \leq \tau)$$

In other words, the failure of an arrival to occur before time t_0 does not alter one's prediction of the length of time (from t_0) before the next arrival.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Time of k^{th} Arrival

Let T_k = time of k^{th} arrival,
 $\tau_k = T_k - T_{k-1}$ = time between arrivals $k-1$ and k .
 Suppose that τ_k ($k=1,2,3,\dots$) have identical and independent exponential distributions with rate λ .
 Then T_k is the **sum** of k random variables with exponential distributions.
 It is said to have a **k -Erlang** distribution.

©Dennis Bricker, U. of Iowa, 1997

Erlang Distribution

time of k^{th} arrival in a Poisson process

Density function $(k>0, \lambda>0, t\geq 0)$

$$f(t) = \frac{\lambda(\lambda t)^{k-1} e^{-\lambda t}}{(k-1)!}$$

$$= \frac{\lambda(\lambda t)^{k-1} e^{-\lambda t}}{\Gamma(k)}$$

where the **Gamma**function is defined by
(for $k>0$, not necessarily integer!)

$$\Gamma(k) = \int_0^{\infty} e^{-u} u^{k-1} du$$

$$= (k-1)! \quad \text{if } k \text{ integer}$$

Erlang Distribution**CDF**

$$F(t) = \frac{\Gamma(k, \lambda t)}{\Gamma(k)}$$

where $\Gamma(k, x)$ is the "incomplete Gamma function" defined by

$$\Gamma(k, x) = \int_0^x e^{-u} u^{k-1} du$$

tabulated

Alternate computation, when k is integer**CDF**

$$F(t) = P\{T_k \leq t\} = P\{N_t \geq k\}$$

$$= 1 - P\{N_t < k\}$$

$$= 1 - P\{N_t \leq k-1\}$$

where N_t = # arrivals at time t
has the **Poisson** distribution:

$$F(t) = 1 - \sum_{x=0}^{k-1} \frac{(\lambda t)^x}{x!} e^{-\lambda t}$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Erlang Distribution**Mean Value**

$$\mu = \frac{k}{\lambda}$$

(These expressions result from the fact that the random variable is the sum of k i.i.d. random variables.)

Variance

$$\sigma^2 = \frac{k}{\lambda^2}$$

More generally, when k is not an integer, the probability distribution is called the **Gamma** distribution.

example:
 $\lambda = 0.2$

Erlang Distribution

As k increases, the distribution becomes less skewed, and more "normal"

In the limit, as $k \rightarrow \infty$, the k -Erlang distribution converges to the Normal distribution!

©Dennis Bricker, U. of Iowa, 1997

Bernoulli process**Poisson process**

Binomial distn.

of events

Poisson distn.

Geometric distn.

time until 1st event

Exponential distn.

Pascal distn.

time until k^{th} event

Erlang distn.

