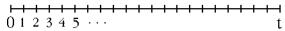


Contents

- Poisson process as limiting case of the Bernoulli process
- Poisson distribution
- **I** Exponential distribution
- 🖙 Erlang (Gamma) distribution

Consider the following situation:



A time interval of length t seconds is divided into one-second intervals, with the probability of a vehicle arriving at an intersection during a one-second interval being a small number p. (Assume that the probability that more than one vehicle arrives is negligible.)

Consider the Bernoulli process $\{X_k; k=1,2,...\}$ where $X_k=1$ if a vehicle arrives during the k^{th} second, and the associated counting process $\{N_t\}$ which counts the number of arrivals during the interval [0,t].

Then N_t has the binomial distribution:

$$P\{N_t = x\} = \begin{pmatrix} t \\ x \end{pmatrix} p^{x} (1-p)^{n-x}$$

with expected value v = tp.

Consider what happens as we divide [0,t] into n smaller time intervals, but in such as way that the expected number of arrivals in [0,t] remains constant, ν .

That is, the probability of an arrival in each of these small intervals must be $\sqrt[\nu]{n}$, and

$$P\{N_t = x\} = \binom{n}{x} \left(\frac{v}{n}\right)^x \left(1 - \frac{v}{n}\right)^{n-x}$$

©Dennis Bricker, U. of Iowa, 1997

Consider the limit of this distribution as $n \rightarrow +\infty$

$$P\{N_{t} = x\} = \frac{v}{x!} \underbrace{\left(1 - \frac{v}{n}\right)^{n}}_{} \underbrace{\left(\frac{n!}{(n-x)!}\right) \frac{1}{n^{x}(1 - \frac{v}{n})^{x}}}_{} \underbrace{\left(\frac{n!}{(n-x)!}\right)^{x}}_{} \underbrace{\frac{n(n-1)(n-2) \dots (n-x+1)}{n^{x}}}_{} \underbrace{\left[\frac{n(1-\frac{v}{n})^{x}}{n^{x}}\right]^{x}}_{} \underbrace{-\frac{n^{x}}{n^{x}}}_{} = 1$$

©Dennis Bricker, U. of Iowa, 1997

$$\begin{split} P\{N_t = x\} &= \binom{n}{x} \binom{\nu}{n}^x \binom{1 - \frac{\nu}{n}}{n}^{n-x} \\ &= \left(\frac{n!}{x!(n-x)!}\right) \binom{\nu}{n}^x \binom{1 - \frac{\nu}{n}}{n}^n \binom{1 - \frac{\nu}{n}}{n}^{-x} \\ &= \frac{\nu^x}{x!} \binom{1 - \frac{\nu}{n}}{n}^n \binom{n!}{(n-x)!} \frac{1}{n^x \binom{1 - \frac{\nu}{n}}{n}^x} \end{split}$$

$$P\{N_t = x\} = \frac{v^x}{x!} e^{-v}$$

If the arrival rate is $-\lambda/second$, then $|\nu|$ = $-\lambda\,t$ and

$$P\{N_t = x\} = \frac{(\lambda t)^x}{x!} e^{-\lambda t}$$

Poisson Distribution

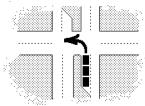
for x=0, 1, 2, 3, ...

©Dennis Bricker, U. of Iowa, 1997

Example A left-turn lane at an intersection has a capacity of **3** autos. **30**% of autos arriving at the intersection wish to turn left.

The expected number of autos arriving during a red signal is 6.

What is the probability that the capacity of the left-turn lane is exceeded during a red signal?



©Dennis Bricker, U. of Iowa, 1997

$$\begin{split} \text{P\{X>3 \mid \text{N arrivals}\}} &= \sum_{x=4}^{N} \binom{N}{x} (0.3)^x (0.7)^{N-x} \\ &= 1 - \sum_{x=0}^{3} \binom{N}{x} (0.3)^x (0.7)^{N-x} \end{split}$$

$$\mathsf{P}\{\mathsf{N} \; \mathsf{arrivals}\} \quad = \frac{6^{\,N}}{N!} \, e^{\,-6}$$

Poisson distn.

©Dennis Bricker, U. of Iowa, 1997

Poisson Distribution

 $P\{N_t = x\} = \frac{(\lambda t)^x}{x!} e^{-\lambda t}$

for x=0, 1, 2, 3,

Mean Value

$$E(N_t) = \lambda t$$

Variance

$$Var(N_t) = \lambda t$$

mean and variance are equal!

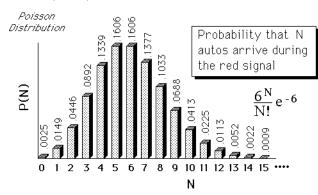
©Dennis Bricker, U. of Iowa, 1997

Given that ${\bf N}$ autos arrive, the number ${\bf X}$ of left-turning autos has the *binomial* distribution.

The number N of autos arriving during the red signal has the *Poisson* distribution.

$$P\{X>3\} = \sum_{N=4}^{\infty} P\{X>3 \mid N \text{ arrivals}\} \underbrace{P\{N \text{ arrivals}\}}_{computed \text{ using binomial distn.}} \underbrace{P\{N \text{ arrivals}\}}_{computed \text{ using binomial distn.}} \underbrace{P\{N \text{ arrivals}\}}_{computed \text{ using Poisson distn.}}$$

©Dennis Bricker, U. of Iowa, 1997



©Dennis Bricker, U. of Iowa, 1997

	Z	P{N}	P{X N}	P{X N}P{N}
ſ	0	0.00247875	0.00000000	0.00000000
-	1	0.01487251	0.00000000	0.00000000
-	2	0.04461754	0.00000000	0.00000000
-	3	0.08923508	0.00000000	0.00000000
- 1	4	0.13385262	0.00810000	0.00108421
- 1	5	0.16062314	0.03078000	0.00494398
- 1	6	0.16062314	0.07047000	0.01131911
- 1	7	0.13767698	0.12603600	0.01735226
-	8	0.10325773	0.19410435	0.02004278
- 1	9	0.06883849	0.27034090	0.01860986
- 1	10	0.04130309	0.35038928	0.01447216
- 1	11	0.02252896	0.43043766	0.00969731
-	12	0.01126448	0.50748423	0.00571655
-	13	0.00519899	0.57939435	0.00301227
- 1	14	0.00222814	0.64483257	0.00143678
- 1	15	0.00089126	0.70313207	0.00062667
	:	•		
- 1	•	•	•	
				0.1083

The probability that the capacity of the left-turn lane is exceeded during each red signal is about 11%

©Dennis Bricker, U. of Iowa, 1997

Time between arrivals

Suppose that the number of arrivals in an interval has the Poisson distribution with arrival rate λ /second.

Let T_1 = time of the first arrival. What is the distribution of T_1 ?

©Dennis Bricker, U. of Iowa, 1997

 $P\{T_1 > t\} = P\{ \text{ NO arrivals occur in interval } [0,t] \}$

$$= \frac{(\lambda t)^{0}}{0!} e^{-\lambda t} = e^{-\lambda t}$$
Poisson distribution P{N_t=0}

CDF:
$$P\{T_1 \le t\} = F(t) = 1 - e^{-\lambda t}$$

Density function:
$$f(t) = \frac{d}{dt}F(t) = \lambda e^{-\lambda t}$$

Exponential Distribution

Exponential Distribution

$$F(t) = 1 - e^{-\lambda t}$$

Mean Value

$$E(T_1) = \frac{1}{\lambda}$$

Variance

$$\forall ar(T_1) = \frac{1}{\lambda^2}$$

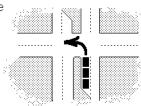
©Dennis Bricker, U. of Iowa, 1997

Example

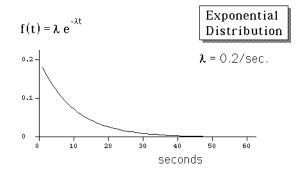
Suppose that the arrival rate for northbound autos is 6 per 30 second red signal, i.e., 0.2/second

What is the distribution of the arrival time of the first auto? (This will also be the distribution of the time

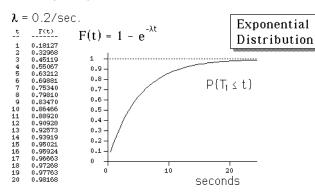
between arrivals!)



©Dennis Bricker, U. of Iowa, 1997



©Dennis Bricker, U. of Iowa, 1997



©Dennis Bricker, U. of Iowa, 1997

Memoryless Property

Exponential Distribution

Suppose that it is known that, at time t_0 , the first arrival has not yet occurred, i.e., $\ T_1 \ > t_0 \, .$

What is the conditional distribution of T_1 ?

That is, what is $P\{T_1 \le t \mid T_1 > t_0\}$ for $t > t_0$?

4

©Dennis Bricker, U. of Iowa, 1997

Memoryless Property

Exponential Distribution

$$\begin{split} P\{T_1 \leq t \ \big|\ T_1 \geq t_0\ \} &= \frac{P\{T_1 \leq t \cap T_1 \geq t_0\ \}}{P\{T_1 > t_0\ \}} = \frac{P\{\ t_0 \leq T_1 \leq t\ \}}{P\{T_1 > t_0\ \}} \\ &= \frac{F(t) - F(t_0)}{1 - F(t_0)} = \frac{(1 - e^{-\lambda t}\) - (1 - e^{-\lambda t_0}\)}{e^{-\lambda t_0}} \\ &= \frac{e^{-\lambda t_0} - e^{-\lambda t}}{e^{-\lambda t_0}} = 1 - e^{-\lambda (t - t_0)} \end{split}$$

©Dennis Bricker, U. of Iowa, 1997

Memoryless Property

Exponential Distribution

$$\text{P}\{T_1 \leq t \; \middle|\; T_1 \geq t_o \;\} = \quad 1 \; - \; e^{-\lambda(t \; - \; t_o)} \; = \; \text{P}\{\; T_1 \leq t \; - \; t_o\}$$

If the time τ is reckoned from time t_o ,

i.e.,
$$\tau$$
 = t - t_o, then

$$P\{T_1 \le t \mid T_1 > t_0\} = P\{T_1 \le t - t_0\} = P\{T_1 \le \tau\}$$

In other words, the failure of an arrival to occur before time t_{o} does not alter one's prediction of the length of time (from t_{o}) before the next arrival.

Time of kth Arrival

Let T_k = time of k^{th} arrival, au_k = T_k - T_{k-1} = time between arrivals k-1 and k.

Suppose that $\, \tau_k \,$ (k=1,2,3,....) have identical and independent exponential distributions with rate Then T_k is the *sum* of k random variables with exponential distributions.

It is said to have a k-Erlang distribution.

©Dennis Bricker, U. of Iowa, 1997

Erlang Distribution

$$F(t) = \frac{\Gamma(k, \lambda t)}{\Gamma(k)}$$

where $\Gamma(\mathbf{k}, \times)$ is the "incomplete Gamma function" defined by

$$\Gamma(\mathbf{k}, \times) = \int_{0}^{\times} e^{-\mathbf{u}} \, \mathbf{u}^{k-1} \, d\mathbf{u}$$

$$tabulated$$

©Dennis Bricker, U. of Iowa, 1997

Erlang Distribution

Mean Value

Variance

(These expressions result from the fact that the random variable is the sum of k i.i.d. random variables.)

More generally, when k is not an integer, the probability distribution is called the Gamma distribution.

©Dennis Bricker, U. of Iowa, 1997

Erlang Distribution

©Dennis Bricker, U. of Iowa, 1997

time of k th arrival in a Poisson process

Density function $(k>0, \lambda>0, t\geq0)$

$$\begin{split} f(t) &= \frac{\lambda \ (\lambda t)^{k-1} \ e^{-\lambda t}}{(k-1)!} \\ &= \frac{\lambda \ (\lambda t)^{k-1} \ e^{-\lambda t}}{\Gamma(k)} \end{split}$$

where the Gamma function is defined by (for k>0, not necessarily integer!)

$$\Gamma(k) = \int_0^\infty e^{-u} u^{k-1} du$$
$$= (k-1)! \quad \text{if } k \text{ integer}$$

©Dennis Bricker, U. of Iowa, 1997

Alternate computation, when k is integer

CDF

$$F(t) = P\{T_k \le t\} = P\{N_t \ge k\}$$
= 1 - P\{N_t < k\}
= 1 - P\{N_t \le k-1\}

where N_t = # arrivals at time t has the *Poisson* distribution:

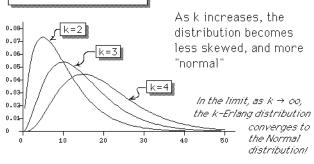
$$F(t) = 1 - \sum_{x=0}^{k-1} \frac{(\lambda t)^{x}}{x!} e^{-\lambda t}$$

©Dennis Bricker, U. of Iowa, 1997

Erlang Distribution

example:

 $\lambda = 0.2$



Poisson process Bernouilli process Binomial distn. # of events Poisson distn.

time until Geometric distn. 1st event Exponential distn.

Pascal distn.

time until kth event

Erlang distn.

K⊅