"Passing the Buck"

GM (Generous Motors) has three profit-making divisions (A, B, and C) which manufacture products, and two non-profit-making departments (Accounting and Management Consulting) which serve the profit-making divisions. During the past year, the budget for the Accounting Department was $\$ 6$ million and for the Management Consulting Department it was $\$ 15$ million.

For purposes of determining profitability, GM wants to charge the cost of the service departments to the manufacturing divisions. However, the efforts of the service departments were not uniformly distributed, and some of their efforts were directed toward serving their internal needs:

	Acctg	Mgmt Consulting	$\begin{gathered} \text { Division } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \text { Division } \\ \text { B } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Division } \\ & \text { C } \end{aligned}$
Accounting	10\%	30\%	20\%	20\%	20\%
M gmt Consulting	30\%	20\%	30\%	0	20\%

How should the costs be allocated?

Define a Discrete-time M arkov Chain model of an invoicefor \$1 which is passed to the receiver of services by the provider, where the state is the current holder of the invoice:

Transition Probability Matrix

	Acct Dept	M gmt Consulting	Division A	Division B	Division C
Acct	0.10	0.30	0.20	0.20	0.20
Consulting	0.30	0.20	0.30	0	0.20
A	0	0	1	0	0
B	0	0	0	1	0
C	0	0	0	0	1

$$
P=\left[\begin{array}{ll}
Q & R \\
0 & I
\end{array}\right]
$$

$$
\text { where } Q=\left[\begin{array}{ll}
0.1 & 0.3 \\
0.3 & 0.2
\end{array}\right] \text { and } R=\left[\begin{array}{ccc}
0.2 & 0.2 & 0.2 \\
0.3 & 0 & 0.2
\end{array}\right]
$$

$$
E=(I-Q)^{-1}=\left[\begin{array}{cc}
0.9 & -0.3 \\
-0.3 & 0.8
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1.26984 & 0.47619 \\
0.47619 & 1.42857
\end{array}\right]
$$

Absorption Probabilities

$$
A=E R=\left[\begin{array}{ll}
1.26984 & 0.47619 \\
0.47619 & 1.42857
\end{array}\right]\left[\begin{array}{ccc}
0.2 & 0.2 & 0.2 \\
0.3 & 0 & 0.2
\end{array}\right]=\left[\begin{array}{lll}
0.3968 & 0.2540 & 0.3492 \\
0.5238 & 0.0952 & 0.3810
\end{array}\right]
$$

For example, the probability that $\$ 1$ originating in the Accounting Department is eventually absorbed by Manufacturing Division A is 39.68\%, compared to 25.4% by Manufacturing Division B (even though each division uses the services of the Accounting Department equally!)

$$
[6,15]\left[\begin{array}{lll}
0.3968 & 0.2540 & 0.3492 \\
0.5238 & 0.0952 & 0.3810
\end{array}\right]=[10.2381,2.95238,7.80952]
$$

That is, Division A should be allocated $\$ 10.2381$ million of the cost, Division B $\$ 2.95238$ million, and Division C $\$ 7.80952$ million.
n-stageTransition Probabilities: For example, consider the n-stage transition probability $p_{1,3}^{(n)}$ that $\$ 1$ originating in the A ccounting Department is absorbed by Mfg. Division A:

n	$p_{1,3}^{(n)}$
1	0.2
2	0.31
3	0.357
4	0.3788
5	0.38863
6	0.393105
7	0.395136
8	0.396058
9	0.396477
10	0.396667
11	0.396754
12	0.396793
13	0.396811
14	0.396819

