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In the transportation model, it is assumed
that no route from one source to a destination
can pass through other sources or destinations

Ainimum-Cost as intermediate points.
~Network Flows =0 ¢ The network is
@ 2 "bi-partite”, i.e.
: —=—0 % bivartiteie.
f 5 g the nodes may be
B E@ S partitioned into 2
This Hypercard stack was prepared by: = .
Dennis Bricker, \\-C) @ sets, with no arc
Dept. of Industrial Engineering, between 2 nodes Of
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lowa City, lowa 52242. <::| E> the same set.
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"The Transshipment Problem"” I | Conservation of Flow |I

We now cons

“transshipments” through other nodes
is allowed.

ider the problem in which {Material Balance, Kirchoff Equations)

Z ><1j - Z in = b1
j k
— [ Met flow
A ‘\ from

Total flow j\ Total flow node |
out of node i into node i
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. Coefficient Matrix of Kirchoff Eqns
| Conservation of Flow |I
><]2 +><]3 _><4l:bl

. () - Xz + Xz + Koa— a2 =bh,
Example: - Xz~ Koz + Xzz + Mg =bs
- K24 — X34 *+ a1 = by
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+1 +1 -1

Kiz + %3 - K41 = by
- Rz + Koz T Kaa— Xz =b; B s
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Incidence

Matrix

Coefficient matrix

of Kirchoff Eq'ns

rows sz nodes
columns =z arcs

elements are
+1,0, or -1
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sode-Arc
Incidence

Sode-Arc T 1
Incidence -1 T 1 -1

Matrix Matrix -1 -1

Does not have full row rank

Exercise: [
(Swrm o rows is 2 12 (13 (23 (24 (32 (34 (4D Draw the network
ﬁﬁ;ﬁ;jﬁ;ﬁ; +1 4] -1 with each node-arc T 1
dependence of ] PETRET incidence matrix -1 T 1 1 -1
e rowsid -1 -1 T 1 -1
Rank is -l 1+ -1 -1 . N 1 —1
(* rows) - 1 Ao -1 -1 +1

sode-Arc

| Unimodularity |I
Incidence

Matrix

A square integer matrix is called waimodular

- if its determinant is + 1.
Exercise:

Wwrite the node-arc
incidence matrix for
the network

— the inverse of a unimodular matrix has only
integer-valued elements

= if B is unimodular and b is integer—valued,
then the solution =B b of the equation Bx=b
& is im;er;;er“—\falued.<::| o

| Total Unimodularity ||

Aninteger matrix A is Zelally unimodular if
every square, nonsingular submatrix of A is
vrimogular.

Every node-arc incidence matrix is totally
unimodular.

— Every LP whose coefficient matrix is a
node-arc incidence matriz and whose RHS is

integer-wvalued will have only integer-valued
basic solutions.

= if b is integer—valued, every basic solution
of the system Ax=b is integer-valued.

@ @

Example: "Rock-Bottom Discount Store:

The company has 8 stores, and is preparing for a

I Pock-Eottom Ciscount Stores promotion of a certain appliance. Some stores have

) ) an excess of the product, and others a need for
I'= $Spitzen-Pollish Company additional units. Given transportation costs for all
= Caterer's Problem routes joining the stores, how should the product

be re-distributed at minimum cost?
I Opencast Mining

iz Stochastic Transportation Froblem

Ka < g
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Fock-Eottom
Ciscount Stores

Linear Programming Tableau

4 it (1,2) (23 (25 (43 (45 (54 (47 (56 (67 (7.8
P \5 If cosd MIN 1 7 3 1 3 2 4 5 3 1
1) 1 =10
3 3 2 [-1 1 1 = 0
3) -1 -1 =-3
+10 1y 4 1 1 1 1 = 2
K ayress regune- 5 -1 -1 1 1 =0
St et )] -1 1 =|-1
7 -1 -1 1 1=l O
8} -1 |=|-8
Qw Qo
N = set of nodes of the network Minimize 2 Ciy%i
A = set of arcs of the network 5.t (i.j)=A
Xij = flow in arc (i,j) 2 X -2 Xje=0 v ken
Cij = unit cost of flow in arc (i,j) ]L N ] Uiy Gi0)
Ly = lower bound of flow in arc (i,j) i = Xy Uy VL] E A
Uy = upper bound of flow in arc (i,j) Assumes:
L . ins i
Minimize 3 CyjXi; no losses or gains in the arcs
st {i,j)=A # flow 15 a "circulation” in the network... no

Minimum-cost
setwork Flow

ZXKJ_ZX1KZO v keN
j i
Froblem :

accumulation of commodity at a node

Other formulations may have RHS of Kirchoff Eg'ns
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Circulation Model
of Network Flow

For aroutine job, Spitzen-Pollish can estimate fairly
accurately the number of crews required on a day-to-day

basis for the job's duration.

The firm may vary the number of crews on-site during the job..
Howewver, there are some costs that do not depend upon how
long a crew remains on-site (costs of recruiting, transportation,

training, etc.)

The company may therefore find it more economical to retain
idle crews on-site if they will be required a few days later.

@

which are nonzero.¢q ¢

Example: Crew Scheduling

The Spitzen-Pollish Co. is a contract maintenance firm that
provides and supervises semi-skilled manpower for major
overhauls of chemical processing equipment.

A standard job frequently requires a thousand or more men,
and may extend from one or two weeks to several months.

Since the client's plant often is located in another city,
Spitzen-Paollish must transport the workers to the plant and
provide on-site housing and meals, etc, in addition to wages.

Do

Spitzen-Follish Co. LF Formulation

Define: Xj; = #* of crews beginning work on-site
at beginning of period i and returning
at end of period (j=11, i.e., beginning
of period j.

Cij = Total operating cost of such a crew.
(Assume Cyj < Cpp if heicjek]
= # of crews required during period k

= length of job (* periods) + 1
re., job ends gt peginning ol period n

@

R
n
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Spitzen-Follish
LIP *odel

n-1 n
Minimize 2 2 CijXjj
i=i j=i+l
subject to n
Z X]j :R]
=2

k n
2 2 Xy=Re  for k=2,3,4,.n-2

izl j=k+1
n-1
]_Z] ><1n Rn—l
Xij e 10,1,2,3,..} foralli]
AW
min| CCCCC|CCCC|CCC|CC|C|O O O
it
2) IR AR -1 =| R,
3) (NI IR IR RN -1 =| Ry
4) 11 IR R -1 =| Ry
5) i i 1o =| R

Make the following transformation:

subtract row 1 from row 2 toobtainrow 2

{ " vz voE o " v F

3o R B o4

4 "5 5'

Qw
mn| CCCCC|CCCC|CCC|CC|C| O O O
1] 11111 = Ry

2 -1 1111 -1 =1 Ro-R,
3 -1 -1 111 1 -1 =| Rs-R,
4") -1 -1 -1 11 1 -11=] Ra-Rs
5') -1 -1 -1 -1 |1 1|=] Rs-Ry4

The resulting tableau, equivalent to the original, has
a constraint coefficient matrix very nearly that of a
node-arc incidence matrix (i.e., +1 and -1 in all but
S columns, which have a +1 but no -1)!

Qw
mn| CCCCC|CCCC|CCC|CC|C|O0 O ©
IR BRI
21 | -1 1111 -1 =| Rs-R,
3 -1 -1 111 1 - =| Rs-R,
4") -1 -1 -1 11 I -1{=] Ra-Rs
5') -1 -1 -1 -1 |1 1|=| Rs-Rg4
6" -1 -1 -1 =11 =| -Rg

Wwe now have an eguivalent formulation of the
Spitzen-Pollish problem which is a network problem!

Wial /s Lhe anpearance of ihe nelwork 7

@
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LP Tableau (for n=6) SHO?MS
W TEOES
Soiil ddde e 339 9255 S4 rhs
mn| CCCCC|CCCC|CCC|CC|C| O O O
1] 11111
2] | T T A 0 O A -1
2) 111 [ -1 = R3
4) 1 P -1 =] Ra
5) 1 1 1 =| R

Not z node-arc
incidence matrix!

Note subscorpls of
wars o ifed for
SIS Qo

The equations obtained in this way are implied by
the original set of equations.

Many of the "1"s are eliminated by this
transformation, and some "-1"s are introduced:

subtract row 1 from row 2 toobtainrow 2

11 -1

1] [ [ [

@

min| CCCCC ccclccic|o 0 0

111
-1 -1 -1 11 -1
-1 -1 R I |

R4_R3
Rs-R4

R L
1
1

Sum all of the constraints, and negate both sides of
the resulting equation... If @ column already has a
+1,-1 pair, the sum is zero. Otherwise, we obtain
the needed -1:

6 | -1] -1]

[ ]

@

[=[-Rs |

Fhe nedwarkd will fge one node per row ol ihe
NOFE T IRCTTENCE MFELIN.

e

z = 4 {5}

Define: §,=Ry-R, wpositive,

85 =Rz-Ry s will be
8,=R4Rz & sunnlle #t
8s=Rg Ry | ok &

i negalive,
7 demand

@
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Because this is a network problem with integer

right-hand-side, any basic LP solution (in

particular, the optimal LP solution) will be

integer-wvalued.

Constraints

@@

Sample [Cata (Caterer’s Problem)

T = 4ddays
2 days (one-day serwvice)
1 day (overnight service)
$2.00 for new napkins

C = $1.40 for overnight laundry service
C = $0.90 for regular laundry service

Day t:
Ramt:

Wwied
450

Thurs  Fri Sat
650 975 850

R+ S+ Vi +Pp = Dy + V¥
[ N
available foruse ondayt  tobe stored
used clean

Lispasiiion of Cfean nanking berore ginner,

Ry +S5¢ + Uy = Dy + Uy
— | —

Lispasiiion of soifed nasking sfer dinner’

sent to stored soiled napkins
laundry dirty
Qo

Constraint Matrix:
Negale bolh sides o the Lop poriion of ihe matriv.

page 5

Example: Caterer's Froblem
A catering service must provide napkins for
dinners on each of T consecutive days.
The number required onday t is Dy.
Requirements may be met by

# purchasing new napkins, at cost €,

each

® Jaundering napkins soiled at an earlier dinner.
Two types of laundry service are available:

& regular:
® Special:

costs Cs
costs Cs

Mo salvage value for

napkins after day T. <O ©

Cecision Yariables:

@

Constraint Matrix:
PR S UV, BRS,UN, B S;UNM B U, rhs

each, =
each, v

days required
days required

Mode,

Cz< Ty O

VT

# napkins purchased on dav t

# napkins sent to regular laundry on day t
# napkins sent to special laundry on day t
# goiled napkins stored at end of dav t

# clean napkins stored at end of day t

450
650
-1 975
&850

450
650

975
1] 8as0

Nod g node—gre IRCITERCE MFLriy. ..

mFniiEied Lo prodiice one '’

@

Constraint Matrix:
Append 5 new row obigined bl negaling sumr oF olfer rows:

(a7 i e

PR S UV, BRS,UN, B S;UNM B U, rhs § B RS UMY BRSULY, B S;UVME U, rhs
-1 1 - 450 1|1 1 - 450
-1 =1 1 - 650 2 L ! - 650
-1 - -1 |-1 1 - 975 3 -1 -1 =1 -1 1 - 975
-1 -1 -1 - - 850 4 -1 -1 -1 - - 850

[ 450 8 11 450

-1 11 650 2 -1 1o 650

-1 11 975 3 -1 11 975

-1 1] 850 & -1 1] 850

The resull 1s \verl negril & noge—are incidence oL ] ‘ r-1] 0

FLN S

@

L F AT
ncidence maierivd
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Caterer's Problem: Network MModel

@

Cpencast ining Problem

s A company has obtained permission to opencast
mine ("strip mine") within a square plot 200
meters on each side.

* Angle of slip of soil is such that sides of excavation
may not be steeper than 45°

» Company decides to consider the problem as one of
extracting rectangular blocks

Ea
25 m.
s

o |
450 m, 330 m

Do

o

o,
i,

The company has estimates for — @=="2">

the wvalue of the ore in various

places at various depths. g

Using these estimates, each block d

has a certain net income —

= (revenue from sale of ore) - (cost of excavating,
extracting, & refining)

[,
i

Which blocks should
be excavaled?

@

Block Numbers Revenue
1]2]3]4 ololo|%
NHOEE zlelt|o]%
2 [ofiofinfiz g [-1|-1]%l-2
— —
13[14{15[16 Example B %25
Data
~ [17[18]19 ~2lz]-2
— —

Z [20{21]22 Zlofol4
= [232425 Ezcavation Cost /Block = z]-z]-5
Level Cost

L] L]

- |26(27 1 3 = |16] 4
= & =

= [2829 2 =RIP
) 3 & =

-+ 4 10 -+

= [30] =
b b

2 [l G :
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Note: the caterer’'s problem originated
in amilitary context:
Airplane engines must be serviced
after every mission (or replaced)
Engine service can be performed
overnight at higher cost, otherwise
is performed the next day
The number of daily missions has been
planned far in advance

@@

The blocks are
selected Lo lie
above one another
like s0:

3

Restrictions imposed by the
angle of slip means that it
is possible only to

excavate blocks forming

an “inverted pyramid”

First, number the ggmllll.ﬂlﬂ

5(6 (7|8 blocks: L...

9 [1oj1112| Define:
141516 1if block i 4=
17[1819] Y= is excavated
0 otherwise

R; = net income from (50
block i —

LEDEL 1

=]

LEVEL 2
(]
=
]
™
N

n
28129] | Objective: Maximize Z] Ri Vi
1=

-
2 [30]

2 Qw
—

Constraints

5|6 |78 .rf_,kl?.-"?‘?p.-"vf'.' ﬂ....

9 [1oj11)12| Block 17 cannot

13[1415)16| be excavated unless 5
blocks 1,2,5,&6

are excavated. g 29

20)21|22
o [V Vi Y
Yiz< Y5, Yz Y

LEDEL 1

LEDEL 2

LEDEL 3

28129\ [Sikewise, Fir egch Hiock i fevels
-+ 23 & wee phiain S0k consiranis,

= [ G
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Size of Problem:

#* of Variables:

7/23/98

30 integer (binary) variables

# of Constraints: 4 x 14 =56 inegualities

If the number of blocks and number of levels
were increased by using a smaller grid, the
number of binary variables and constraint
increases dramatically!

Spfution as an (leger programming probiem
Gguick iV becomes exorfftantiy expensive to

compiitel &ac
i1 23 456 78 9 10 11 12 13 14
- -1 1 cf0
Constraint T } 8
Matrix -1 1 |0
-1 T B
-1 1 <10
-1 1 <0
Ao -1 1 <10
apparent -1 B ! A
network -1 1 |0
structure! ll 1 ] 0
-1 1 | 0
-1 ! 1 |0
- 1 | 0
- but -1 i o
conRsider I TTelo
Lhe dual -1 1lzla
af the LFP -1 4 } ¢ 8
relfaxationt =
Q@D plus Y¥iel0,11V i
We will obiain 7 node—arc incidence malrix iF we
8 syfhitract surplus variables fo comvert (o equations
8 70T 7 row = gegative of sum of #if constrsints
MIN|oooojoooojoooo|oooofoo 00| 1111111111111
1 [ 1 : R
2| -1 -1 1 2 R;
3 -1 1 : | R3
4 -1 -1 : 1 : | Ra
5 -1 -1 - -1 1 3R
& -1 -1 1 : |Re
7 -1 1 Ry
8 R I 1 : | Rg
9 -1 1 : |Re
wirrid B 1 : |R
Nl 1111 -1 1 NI
12 1111 -1 1 s | Ry
13 1111 -1 INBLIE
14 1111 12 [Ryg
A

7
Frr of Fhese rows will be serod

For each block, there is a node, whose "supply” is Rj

(demand if LEVEL 1
Ri<0) R 2 =
@ = =
- = e
o LEVEL 2 [n addiltion,
there is a
i) S "super” node
LEVEL 3 # 15
with "dernand”
@c "R

page 7

Let's use a smalier versfon 1o study the structure

of the problem: {Ym <Y Yo €Y,
Yig ¢ ¥a Yig<Vs
IR V<Y, Y <V
Z[4]s]o { 1 <Yz 1 &3
= 8|9 Vi <5 Wiy (Y
N Yizg € ¥4 Yip < Vs
= 10(11 Y]Q < Y7 Y]Q < V%
-
o [2ps {Ym $Ys iz <Y
j Wiz & ¥g iz < Vg
o < <
Z {Ym—vm Ya €Y1
&ac Yig 2 Mg < Vi3
Cual ILIP:
MIN| OO OoojoooojooooQ|joooo0|oooot111111111 1111
1 1-1 1 : R
2| -1 -1 1 2 R;
3 -1 1 : | R3
4 -1 -1] 1 : | Ra
5 -1 -1 - -1 1 s e
& -1 -1 1 : |Re
7 -1 1 : Ry
g -1 -1 1 : | Rg
9 -1 1 : |Ra
11111 -1 1 xR
Nl 1111 -1 1 NI
12 1111 -1 1 : [ Ry2
13 1111 -1 INBLIE
14 1111 12 [Ryg
. -
Tiis is ALROST 7 pode-arc derived from i< |
ncidence matrixi @ 1
For what network is this the node-arc incidence
matriz?
MIN| OO OoojoooojooooQ|joooo0|oooot111111111 1111
1 1-1 1 [
2| -l -1 1 Ry
3 -1 1 Rz
4 -1 —1] 1 *|Rg
5 -1 -1 - -1 1 .| R
3] -1 -1 1 . R:
7 -1 1 R
8 -1 -1 1 = Rs
2 -1 1 Rg
W ATT -1 1 R
1" 1111 -1 1 : R}?
12 1111 -1 1 Rz
13 1111 -1 MLE
14 1111 1, [ria
15 EEEEEEEEEEEEEEINNETT

<::| E> These columns are negative\

of the preceding 14 columns!

There is an arc from each block to each of the 4
blocks above

RS

LEVEL 1

&

AW

LEVEL 3
A

=)

@
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There is a pair of arcs between each block and # 15

LEVEL 1
> )

2/ o

M LE\"EL 2
N e/ wm
e flow into
N node * 15
T
AW

Objective is
to minimize

Another formulztion’

The fowr constraints
Y]-l.rﬁ Y] :
Yi7< Y,

may be replaced by the sing/e constraint
Y24 Y+ Yo+ Y5+

Yi7< Y
fi7< e

since Y- =1 is feasible in this constraint as/y 77
Y] :YQZYSZYE‘ =1
Qo
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After solving the network problem, the
solution of the original problem is obtained
from the dual variables (simplex multipliers).

Because min-cost network flow problems are
very efficiently solved by the network simplex
method, while general-purpose branch-and-
bound algorithms are very time-consuming,
large versions of this problem can be solved
only as network problems!

@

Using these alternate constraints, our sample
problem's formulation is reduced in size from

o6 linear constraints to only 14!

Howewver, whereas in the earlier formulation the
integer restrictions can be relaxed and the problem
solved as a min-cost network flow problem,

the new formulation will reguire the use of an
integer programming algorithm such as branch-and-
bound.

The compulalional effort will be increased by
several arders of magnitude!

R



